57 research outputs found

    Non-monetary numeraires: Varying the payment vehicle in a choice experiment for health interventions in Uganda

    Get PDF
    Schistosomiasis is a serious health problem in many parts of Africa which is linked to poor water quality and limited sanitation resources. We administered a discrete choice experiment on water access and health education in rural Uganda, focussing on interventions designed to reduce cases of the disease. Unlike previous studies, we included a payment vehicle of both labour hours supplied per week and money paid per month within each choice set. We were thus able to elicit both willingness to pay and willingness to work for alternative interventions. Respondents exhibit high demand for new water sources. From the random parameter model, only households with knowledge about water-borne parasites are price sensitive and exhibit willingness to pay values. Through a latent class model specification, higher income respondents exhibit higher willingness to pay values for all programme attributes; however, lower income participants have higher willingness to work values for certain new water sources. We found a shadow wage rate of labour that is between 15 and 55% of the market wage rate

    Reduced efficacy of praziquantel against Schistosoma mansoni associated with multiple-rounds of mass drug administration

    Get PDF
    The efficacy of praziquantel against Schistosoma mansoni was significantly lower in Ugandan schools that had received more prior rounds of mass drug administration, as determined by fitting a statistical model to parasite egg counts before and after treatment

    ABO Blood Groups Do Not Predict Schistosoma mansoni Infection Profiles in Highly Endemic Villages of Uganda

    Get PDF
    Schistosoma mansoni is a parasite which causes significant public-health issues, with over 240 mil-lion people infected globally. In Uganda alone, approximately 11.6 million people are affected. Despite over a decade of mass drug administration in this country, hyper-endemic hotspots persist, and individuals who are repeatedly heavily and rapidly reinfected are observed. Human blood-type antigens are known to play a role in the risk of infection for a variety of diseases, due to cross-reactivity between host antibodies and pathogenic antigens. There have been conflicting results on the effect of blood type on schistosomiasis infection and pathology. Moreover, the ef-fect of blood type as a potential intrinsic host factor on S. mansoni prevalence, intensity, clearance, and reinfection dynamics and on co-infection risk remains unknown. Therefore, the epidemio-logical link between host blood type and S. mansoni infection dynamics was assessed in three hyper-endemic communities in Uganda. Longitudinal data incorporating repeated pretreatment S. mansoni infection intensities and clearance rates were used to analyse associations between blood groups in school-aged children. Soil-transmitted helminth coinfection status and biometric parameters were incorporated in a generalised linear mixed regression model including age, gender, and body mass index (BMI), which have previously been established as significant factors influencing the prevalence and intensity of schistosomiasis. The analysis revealed no associations between blood type and S. mansoni prevalence, infection intensity, clearance, reinfection, or coinfection. Variations in infection profiles were significantly different between the villages, and egg burden significantly decreased with age. While blood type has proven to be a predictor of several diseases, the data collected in this study indicate that it does not play a significant role in S. mansoni infection burdens in these high-endemicity communities

    Residence time, water contact, and age-driven Schistosoma mansoni infection in hotspot communities in Uganda

    Get PDF
    Schistosomiasis is the second most important parasitic infection after malaria in terms of its socioeconomic impact and is endemic in 78 countries. It affects more than 240 million people worldwide, with 90% of cases occurring in sub-Saharan Africa. In Uganda, Schistosomamansoni is the most common species, with more than seven million people infected and 17 million living at risk despite mass drug administration (MDA) of praziquantel initiated more than 16 years ago. There has been a shift in the WHO schistosomiasis goals from controlling morbidity to elimination as a public health problem. Understanding the drivers of infection in persistent transmission hotspots despite ongoing control interventions is paramount. We conducted a cross-sectional epidemiological study of 381 individuals in Bugoto community, Mayuge district, Eastern Uganda, along with a structured survey to ascertain drivers of S. mansoni infection. Bugoto has had community-wide MDA since 2004. We detected a S. mansoni prevalence of 52% across the whole community and a prevalence of 71% in school-age children. This qualifies Bugoto as a highly endemic community according to WHO guidelines. Using a multivariate logistic regression, we found that S. mansoni infection was best explained by age group, longer residence times, and any daily contact with lake water. Schistosomamansoni infection remains a large burden across this community. This study identifies opportunities for interventions that reduce lake water contact, expand treatment eligibility to all at risk, and improve MDA coverage for long-term residents in these settings to control schistosomiasis in persistent transmission hotspots

    Impacts of host gender on Schistosoma mansoni risk in rural Uganda-A mixed-methods approach

    Get PDF
    Background The World Health Organization identified Uganda as one of the 10 highly endemic countries for schistosomiasis. Annual mass drug administration (MDA) with praziquantel has led to a decline in intensity of Schistosoma mansoni infections in several areas. However, as hotspots with high (re)infection rates remain, additional research on risk factors and implementing interventions to complement MDA are required to further reduce disease burden in these settings. Through a mixed-methods study we aimed to gain deeper understanding of how gender may impact risk and reinfection in order to inform disease control programmes and ascertain if gender-specific interventions may be beneficial. Methodology/Principal findings In Bugoto, Mayuge District, Eastern Uganda we conducted ethnographic observations (n = 16) and examined epidemiology (n = 55) and parasite population genetics (n = 16) in school-aged children (SAC), alongside a community-wide household survey (n = 130). Water contact was frequent at home, school and in the community and was of domestic, personal care, recreational, religious or commercial nature. Qualitative analysis of type of activity, duration, frequency, level of submersion and water contact sites in children showed only few behavioural differences in water contact between genders. However, survey data revealed that adult women carried out the vast majority of household tasks involving water contact. Reinfection rates (96% overall) and genetic diversity were high in boys (pre-He = 0.66; post-He = 0.67) and girls (pre-He = 0.65; post-He = 0.67), but no differences in reinfection rates (p = 0.62) or genetic diversity by gender before (p = 0.54) or after (p = 0.97) treatment were found. Conclusions/Significance This mixed methods approach showed complementary findings. Frequent water exposure with few differences between boys and girls was mirrored by high reinfection rates and genetic diversity in both genders. Disease control programmes should consider the high reinfection rates among SAC in remaining hotspots of schistosomiasis and the various purposes and settings in which children and adults are exposed to water

    Harnessing Schistosoma -associated metabolite changes in the human host to identify biomarkers of infection and morbidity: where are we and what should we do next?

    Get PDF
    Schistosomiasis is the second most widespread parasitic disease affecting humans. A key component of today’s infection control measures is the diagnosis and monitoring of infection, informing individual- and community-level treatment. However, newly acquired infections and/or low parasite burden are still difficult to diagnose reliably. Furthermore, even though the pathological consequence of schistosome egg sequestration in host tissues is well described, the evidence linking egg burden to morbidity is increasingly challenged, making it inadequate for pathology monitoring. In the last decades, omics-based instruments and methods have been developed, adjusted, and applied in parasitic research. In particular, the profiling of the most reliable determinants of phenotypes, metabolites by metabolomics, emerged as a powerful boost in the understanding of basic interactions within the human host during infection. As such, the fine detection of host metabolites produced upon exposure to parasites such as Schistosoma spp. and the ensuing progression of the disease are believed to enable the identification of Schistosoma spp. potential biomarkers of infection and associated pathology. However, attempts to provide such a comprehensive understanding of the alterations of the human metabolome during schistosomiasis are rare, limited in their design when performed, and mostly inconclusive. In this review, we aimed to briefly summarize the most robust advances in knowledge on the changes in host metabolic profile during Schistosoma infections and provide recommendations for approaches to optimize the identification of metabolomic signatures of human schistosomiasis

    Phenotypic and genotypic monitoring of Schistosoma mansoni in Tanzanian schoolchildren five years into a preventative chemotherapy national control programme

    Get PDF
    We conducted combined in vitro PZQ efficacy testing with population genetic analyses of S. mansoni collected from children from two schools in 2010, five years after the introduction of a National Control Programme. Children at one school had received four annual PZQ treatments and the other school had received two mass treatments in total. We compared genetic differentiation, indices of genetic diversity, and estimated adult worm burden from parasites collected in 2010 with samples collected in 2005 (before the control programme began) and in 2006 (six months after the first PZQ treatment). Using 2010 larval samples, we also compared the genetic similarity of those with high and low in vitro sensitivity to PZQ

    The genomic architecture of novel Simulium damnosum Wolbachia prophage sequence elements and implications for onchocerciasis epidemiology

    Get PDF
    Research interest in Wolbachia is growing as new discoveries and technical advancements reveal the public health importance of both naturally occurring and artificial infections. Improved understanding of the Wolbachia bacteriophages (WOs) WOcauB2 and WOcauB3 [belonging to a sub-group of four WOs encoding serine recombinases group 1 (sr1WOs)], has enhanced the prospect of novel tools for the genetic manipulation of Wolbachia. The basic biology of sr1WOs, including host range and mode of genomic integration is, however, still poorly understood. Very few sr1WOs have been described, with two such elements putatively resulting from integrations at the same Wolbachia genome loci, about 2 kb downstream from the FtsZ cell-division gene. Here, we characterize the DNA sequence flanking the FtsZ gene of wDam, a genetically distinct line of Wolbachia isolated from the West African onchocerciasis vector Simulium squamosum E. Using Roche 454 shot-gun and Sanger sequencing, we have resolved >32 kb of WO prophage sequence into three contigs representing three distinct prophage elements. Spanning ≥36 distinct WO open reading frame gene sequences, these prophage elements correspond roughly to three different WO modules: a serine recombinase and replication module (sr1RRM), a head and base-plate module and a tail module. The sr1RRM module contains replication genes and a Holliday junction recombinase and is unique to the sr1 group WOs. In the extreme terminal of the tail module there is a SpvB protein homolog—believed to have insecticidal properties and proposed to have a role in how Wolbachia parasitize their insect hosts. We propose that these wDam prophage modules all derive from a single WO genome, which we have named here sr1WOdamA1. The best-match database sequence for all of our sr1WOdamA1-predicted gene sequences was annotated as of Wolbachia or Wolbachia phage sourced from an arthropod. Clear evidence of exchange between sr1WOdamA1 and other Wolbachia WO phage sequences was also detected. These findings provide insights into how Wolbachia could affect a medically important vector of onchocerciasis, with potential implications for future control methods, as well as supporting the hypothesis that Wolbachia phages do not follow the standard model of phage evolution

    Translating from egg- to antigen-based indicators for Schistosoma mansoni elimination targets: A Bayesian latent class analysis study

    Get PDF
    This Document is Protected by copyright and was first published by Frontiers. All rights reserved. it is reproduced with permission.Schistosomiasis is a parasitic disease affecting over 240-million people. World Health Organization (WHO) targets for Schistosoma mansoni elimination are based on Kato-Katz egg counts, without translation to the widely used, urine-based, point-of-care circulating cathodic antigen diagnostic (POC-CCA). We aimed to standardize POC-CCA score interpretation and translate them to Kato-Katz-based standards, broadening diagnostic utility in progress towards elimination. A Bayesian latent-class model was fit to data from 210 school-aged-children over four timepoints pre- to six-months-post-treatment. We used 1) Kato-Katz and established POC-CCA scoring (Negative, Trace, +, ++ and +++), and 2) Kato-Katz and G-Scores (a new, alternative POC-CCA scoring (G1 to G10)). We established the functional relationship between Kato-Katz counts and POC-CCA scores, and the score-associated probability of true infection. This was combined with measures of sensitivity, specificity, and the area under the curve to determine the optimal POC-CCA scoring system and positivity threshold. A simulation parametrized with model estimates established antigen-based elimination targets. True infection was associated with POC-CCA scores of ≥ + or ≥G3. POC-CCA scores cannot predict Kato-Katz counts because low infection intensities saturate the POC-CCA cassettes. Post-treatment POC-CCA sensitivity/specificity fluctuations indicate a changing relationship between egg excretion and antigen levels (living worms). Elimination targets can be identified by the POC-CCA score distribution in a population. A population with ≤2% ++/+++, or ≤0.5% G7 and above, indicates achieving current WHO Kato-Katz-based elimination targets. Population-level POC-CCA scores can be used to access WHO elimination targets prior to treatment. Caution should be exercised on an individual level and following treatment, as POC-CCAs lack resolution to discern between WHO Kato-Katz-based moderate- and high-intensity-infection categories, with limited use in certain settings and evaluations

    Sensitivity and Specificity of Multiple Kato-Katz Thick Smears and a Circulating Cathodic Antigen Test for Schistosoma mansoni Diagnosis Pre- and Post-repeated-Praziquantel Treatment

    Get PDF
    Two Kato-Katz thick smears (Kato-Katzs) from a single stool are currently recommended for diagnosing Schistosoma mansoni infections to map areas for intervention. This ‘gold standard’ has low sensitivity at low infection intensities. The urine point-of-care circulating cathodic antigen test (POC-CCA) is potentially more sensitive but how accurately they detect S. mansoni after repeated praziquantel treatments, their suitability for measuring drug efficacy and their correlation with egg counts remain to be fully understood. We compared the accuracies of one to six Kato-Katzs and one POC-CCA for the diagnosis of S. mansoni in primary-school children who have received zero to ten praziquantel treatments. We determined the impact each diagnostic approach may have on monitoring and evaluation (M&E) and drug-efficacy findings
    • …
    corecore