20,481 research outputs found

    Quantum-limited mass flow of liquid 3^{3}He

    Get PDF
    We consider theoretically the possibility of observing unusual quantum fluid behavior in liquid 3^{3}He and solutions of 3^{3}He in 4^{4}He systems confined to nano-channels. In the case of pure ballistic flow at very low temperature conductance will be quantized in units of 2m2/h2m^{2}/h. We show that these steps should be sensitive to increases in temperature. We also use of a random scattering matrix simulation to study flow with diffusive wall scattering. Universal conductance fluctuations analogous to those seen in electron systems should then be observable. Finally we consider the possibility of the cross-over to a one-dimensional system at sufficiently low temperature where the system could form a Luttinger liquid

    Demonstration of a sterilizable solid rocket motor system

    Get PDF
    A solid propellant rocket motor containing 60.9 Kg (134-lb) of propellant was successfully static fired after being subjected to eight heat sterilization cycles (three 54-hour cycles plus five 40-hour cycles) at 125 C (257 F). The test motor, a modified SVM-3 chamber, incorporated a flexible grain retention system of EPR rubber to relieve thermal shrinkage stresses. The propellant used in the motor was ANB-3438, and 84 wt% solids system (18 wt% aluminum) containing 66 wt% stabilized ammonium perchlorate oxidizer and a saturated hydroxylterminated polybutadiene binder. Bonding of the propellant to the EPR insulation (GenGard V-4030) was provided by the use of SD-886, an epoxy urethane restriction

    Suppression of Giant Magnetoresistance by a superconducting contact

    Full text link
    We predict that current perpendicular to the plane (CPP) giant magnetoresistance (GMR) in a phase-coherent magnetic multilayer is suppressed when one of the contacts is superconducting. This is a consequence of a superconductivity-induced magneto-resistive (SMR) effect, whereby the conductance of the ferromagnetically aligned state is drastically reduced by superconductivity. To demonstrate this effect, we compute the GMR ratio of clean (Cu/Co)_nCu and (Cu/Co)_nPb multilayers, described by an ab-initio spd tight binding Hamiltonian. By analyzing a simpler model with two orbitals per site, we also show that the suppression survives in the presence of elastic scattering by impurities.Comment: 5 pages, 4 figures. Submitted to PR

    High Dimensional Classification with combined Adaptive Sparse PLS and Logistic Regression

    Get PDF
    Motivation: The high dimensionality of genomic data calls for the development of specific classification methodologies, especially to prevent over-optimistic predictions. This challenge can be tackled by compression and variable selection, which combined constitute a powerful framework for classification, as well as data visualization and interpretation. However, current proposed combinations lead to instable and non convergent methods due to inappropriate computational frameworks. We hereby propose a stable and convergent approach for classification in high dimensional based on sparse Partial Least Squares (sparse PLS). Results: We start by proposing a new solution for the sparse PLS problem that is based on proximal operators for the case of univariate responses. Then we develop an adaptive version of the sparse PLS for classification, which combines iterative optimization of logistic regression and sparse PLS to ensure convergence and stability. Our results are confirmed on synthetic and experimental data. In particular we show how crucial convergence and stability can be when cross-validation is involved for calibration purposes. Using gene expression data we explore the prediction of breast cancer relapse. We also propose a multicategorial version of our method on the prediction of cell-types based on single-cell expression data. Availability: Our approach is implemented in the plsgenomics R-package.Comment: 9 pages, 3 figures, 4 tables + Supplementary Materials 8 pages, 3 figures, 10 table

    Drive mechanism for production of simulated human breath

    Get PDF
    Simulated breath drive mechanism was developed as subsystem to breathing metabolic simulator. Mechanism reproduces complete range of human breath rate, breath depth, and breath waveform, as well as independently controlled functional residual capacity. Mechanism was found capable of simulating various individual human breathing characteristics without any changes of parts

    Ultraviolet spectroscopy of old novae and symbiotic stars

    Get PDF
    The IUE spectra are presented for two old novae and for two of the symbiotic variables. Prominent emission line spectra are revealed as a continuum whose appearance is effected by the system inclination. These data provide evidence for hot companions in the symbiotic stars, making plausible the binary model for these peculiar stars. Recent IUE spectra of dwarf novae provide additional support for the existence of optically thick accretion disks in active binary systems. The ultraviolet data of the eclipsing dwarf novae EX Hya and BV Cen appear flatter than for the noneclipsing systems, an effect which could be ascribed to the system inclination

    Preliminary flight evaluation of an engine performance optimization algorithm

    Get PDF
    A performance seeking control (PSC) algorithm has undergone initial flight test evaluation in subsonic operation of a PW 1128 engined F-15. This algorithm is designed to optimize the quasi-steady performance of an engine for three primary modes: (1) minimum fuel consumption; (2) minimum fan turbine inlet temperature (FTIT); and (3) maximum thrust. The flight test results have verified a thrust specific fuel consumption reduction of 1 pct., up to 100 R decreases in FTIT, and increases of as much as 12 pct. in maximum thrust. PSC technology promises to be of value in next generation tactical and transport aircraft

    Rubidium and lead abundances in giant stars of the globular clusters M 13 and NGC 6752

    Full text link
    We present measurements of the neutron-capture elements Rb and Pb in five giant stars of the globular cluster NGC 6752 and Pb measurements in four giants of the globular cluster M 13. The abundances were derived by comparing synthetic spectra with high resolution, high signal-to-noise ratio spectra obtained using HDS on the Subaru telescope and MIKE on the Magellan telescope. The program stars span the range of the O-Al abundance variation. In NGC 6752, the mean abundances are [Rb/Fe] = -0.17 +/- 0.06 (sigma = 0.14), [Rb/Zr] = -0.12 +/- 0.06 (sigma = 0.13), and [Pb/Fe] = -0.17 +/- 0.04 (sigma = 0.08). In M 13 the mean abundance is [Pb/Fe] = -0.28 +/- 0.03 (sigma = 0.06). Within the measurement uncertainties, we find no evidence for a star-to-star variation for either Rb or Pb within these clusters. None of the abundance ratios [Rb/Fe], [Rb/Zr], or [Pb/Fe] are correlated with the Al abundance. NGC 6752 may have slightly lower abundances of [Rb/Fe] and [Rb/Zr] compared to the small sample of field stars at the same metallicity. For M 13 and NGC 6752 the Pb abundances are in accord with predictions from a Galactic chemical evolution model. If metal-poor intermediate-mass asymptotic giant branch stars did produce the globular cluster abundance anomalies, then such stars do not synthesize significant quantities of Rb or Pb. Alternatively, if such stars do synthesize large amounts of Rb or Pb, then they are not responsible for the abundance anomalies seen in globular clusters.Comment: Accepted for publication in Ap
    corecore