22,737 research outputs found

    Quantum Resonances of Weakly Linked, Mesoscopic, Superconducting Dots

    Full text link
    We examine quantum properties of mesoscopic, Josephson coupled superconducting dots, in the limit that charging effects and quantization of energy levels within the dots are negligible, but quasi-particle transmission into the weak link is not. We demonstrate that quasi-particle resonances lead to current-phase relations, which deviate markedly from those of weak links connecting macroscopic superconductors. Results for the steady state dc Josephson current of two coupled dots are presented.Comment: Tex, 3 figures available on request to [email protected] (Andy Martin

    Non-destructive ultrasonic measurements of case depth

    Get PDF
    Two ultrasonic methods for nondestructive measurements of the depth of a case-hardened layer in steel are described. One method involves analysis of ultrasonic waves diffused back from the bulk of the workpiece. The other method involves finding the speed of propagation of ultrasonic waves launched on the surface of the work. Procedures followed in the two methods for measuring case depth are described

    Giant Conductance Oscillations In Mesoscopic Andreev Interferometers

    Full text link
    We analyze the electrical conductance G(Ï•)G(\phi) of a two-dimensional, phase coherent structure in contact with two superconductors, which is known to be an oscillatory function of the phase difference Ï•\phi between the superconductors. It is predicted that for a metallic sample, the amplitude of oscillation is enhanced by placing a normal barrier at the interface and that, by tuning the strength of the barrier, can be orders of magnitude greater than values observed in recent experiments. Giant oscillations can also be obtained without a barrier, provided a crucial sum rule is broken. This can be achieved by disorder induced normal scattering. In the absence of zero phase inter-channel scattering, the conductance possesses a zero phase minimum.Comment: 4 pages of Revtex, 6 figures available on reques

    Optimal softening for force calculations in collisionless N-body simulations

    Full text link
    In N-body simulations the force calculated between particles representing a given mass distribution is usually softened, to diminish the effect of graininess. In this paper we study the effect of such a smoothing, with the aim of finding an optimal value of the softening parameter. As already shown by Merritt (1996), for too small a softening the estimates of the forces will be too noisy, while for too large a softening the force estimates are systematically misrepresented. In between there is an optimal softening, for which the forces in the configuration approach best the true forces. The value of this optimal softening depends both on the mass distribution and on the number of particles used to represent it. For higher number of particles the optimal softening is smaller. More concentrated mass distributions necessitate smaller softening, but the softened forces are never as good an approximation of the true forces as for not centrally concentrated configurations. We give good estimates of the optimal softening for homogeneous spheres, Plummer spheres, and Dehnen spheres. We also give a rough estimate of this quantity for other mass distributions, based on the harmonic mean distance to the kkth neighbour (kk = 1, .., 12), the mean being taken over all particles in the configuration. Comparing homogeneous Ferrers ellipsoids of different shapes we show that the axial ratios do not influence the value of the optimal softening. Finally we compare two different types of softening, a spline softening (Hernquist & Katz 1989) and a generalisation of the standard Plummer softening to higher values of the exponent. We find that the spline softening fares roughly as well as the higher powers of the power-law softening and both give a better representation of the forces than the standard Plummer softening.Comment: 16 pages Latex, 19 figures, accepted for publication in MNRAS, corrected typos, minor changes mainly in sec.

    Electric instability in superconductor-normal conductor ring

    Full text link
    Non-linear electrodynamics of a ring-shaped Andreev interferometer (superconductor-normal conductor-superconductor hybrid structure) inductively coupled to a circuit of the dissipative current is investigated. The current-voltage characteristics (CVC) is demonstrated to be a series of loops with several branches intersecting in the CVC origin. The sensitivity of the transport current to a change of the applied external magnetic flux can be comparable to the one of the conventional SQUID's. Spontaneous arising of coupled non-linear oscillations of the transport current, the Josephson current and the magnetic flux in Andreev interferometers are also predicted and investigated. The frequency of these oscillations can be varied in a wide range, while the maximal frequency can reach ωmax∼1012\omega_{max} \sim 10^{12} sec−1sec^{-1}.Comment: 4 pages, 4 figure

    Contribution of weak localization to non local transport at normal metal / superconductor double interfaces

    Full text link
    In connection with a recent experiment [Russo {\it et al.}, Phys. Rev. Lett. {\bf 95}, 027002 (2005)], we investigate the effect of weak localization on non local transport in normal metal / insulator / superconductor / insulator / normal metal (NISIN) trilayers, with extended interfaces. The negative weak localization contribution to the crossed resistance can exceed in absolute value the positive elastic cotunneling contribution if the normal metal phase coherence length or the energy are large enough.Comment: 9 pages, 7 figures, minor modification

    Forming disk galaxies in wet major mergers. I. Three fiducial examples

    Full text link
    Using three fiducial Nbody+SPH simulations, we follow the merging of two disk galaxies with a hot gaseous halo component each, and examine whether the merger remnant can be a spiral galaxy. The stellar progenitor disks are destroyed by violent relaxation during the merging and most of their stars form a classical bulge, while the remaining form a thick disk and its bar. A new stellar disk forms subsequently and gradually in the remnant from the gas accreted mainly from the halo. It is vertically thin and well extended in its equatorial plane. A bar starts forming before the disk is fully in place, contrary to what is assumed in idealised simulations of isolated bar-forming galaxies. It has morphological features such as ansae and boxy/peanut bulges. Stars of different ages populate different parts of the box/peanut. A disky pseudobulge forms also, so that by the end of the simulation, all three types of bulges coexist. The oldest stars are found in the classical bulge, followed by those of the thick disk, then by those in the thin disk. The youngest stars are in the spiral arms and the disky pseudobulge. The disk surface density profiles are of type II (exponential with downbending), and the circular velocity curves are flat and show that the disks are submaximum in these examples: two clearly so and one near-borderline between maximum and submaximum. On average, only roughly between 10 and 20% of the stellar mass is in the classical bulge of the final models, i.e. much less than in previous simulations.Comment: 17 pages, 8 figures, accepted for publication in ApJ. V2: replaced Figure 4 with correct versio
    • …
    corecore