92 research outputs found

    United States Air Force Academy get-away-special flexible beam experiment

    Get PDF
    The Department of Astronautics at the United States Air Force Academy is currently planning to fly an experiment in a NASA Get-Away-Special (GAS) canister. The experiment was named the flex beam experiment. The primary technical objective of the flex beam experiment is to measure the damping of a thin beam in the vacuum and zero G environment of space. By measuring the damping in space, it is hoped to determine the amount of damping the beam normally experiences due to the gravitational forces present on Earth. This will allow validation of models which predict the dynamics of thin beams in the space environment. The experiment will also allow the Academy to develop and improve its ability to perform experiments within the confines of a NASA GAS canister. Several experiments, of limited technical difficulty, were flown by the Academy. More complex experiments are currently planned and it is hoped to learn techniques with each space shuttle flight

    Genotype by environment interactions for growth in Red Angus

    Get PDF
    Citation: Fennewald, D. J., Weaber, R. L., & Lamberson, W. R. (2017). Genotype by environment interactions for growth in Red Angus. Journal of Animal Science, 95(2), 538-544. doi:10.2527/jas2016.0846Accuracy of sire selection is limited by how well animals are characterized for their environment. The objective of this study was to evaluate the presence of genotype x environment interactions (GxE) for birth weight (BiW) and weaning weight (WW) for Red Angus in the United States. Adjusted weights were provided by the Red Angus Association of America. Environments were defined as 9 regions within the continental United States with similar temperature-humidity indices. Mean weights of calves were determined for each region and for each sire's progeny within each region. A reaction norm (RN) for each bull was estimated by regressing the sire means on the region means weighted for the number of progeny of each sire. The range for BiW and WW RN was -1.3 to 4.0 and -1.7 to 2.8, respectively. The heritabilities of BiW and WW RN were 0.40 and 0.39, respectively. Phenotypic and genetic correlations between BiW and WW RN were 0.19 and 0.54, respectively. The phenotypic correlation of the progeny mean to the RN was -0.20 (P < 0.05) and suggests that sires with higher means are more stable in progeny performance across environments. Weights in different regions were considered separate traits and genetic correlations were estimated between all pairs of regions as another method to determine GxE. Genetic correlations < 0.80 indicate GxE at a level for concern, but existed for only 2 of 36 estimates for BiW and 12 of 36 estimates for WW. Genetic correlations between different regions ranged from 0.74 to 0.96 for BiW and 0.62 to 0.99 for WW and indicate that sires tend to rank similarly across environments for these traits

    The geometry of reaction norms yields insights on classical fitness functions for Great Lakes salmon.

    Get PDF
    Life history theory examines how characteristics of organisms, such as age and size at maturity, may vary through natural selection as evolutionary responses that optimize fitness. Here we ask how predictions of age and size at maturity differ for the three classical fitness functions-intrinsic rate of natural increase r, net reproductive rate R0, and reproductive value Vx-for semelparous species. We show that different choices of fitness functions can lead to very different predictions of species behavior. In one's efforts to understand an organism's behavior and to develop effective conservation and management policies, the choice of fitness function matters. The central ingredient of our approach is the maturation reaction norm (MRN), which describes how optimal age and size at maturation vary with growth rate or mortality rate. We develop a practical geometric construction of MRNs that allows us to include different growth functions (linear growth and nonlinear von Bertalanffy growth in length) and develop two-dimensional MRNs useful for quantifying growth-mortality trade-offs. We relate our approach to Beverton-Holt life history invariants and to the Stearns-Koella categorization of MRNs. We conclude with a detailed discussion of life history parameters for Great Lakes Chinook Salmon and demonstrate that age and size at maturity are consistent with predictions using R0 (but not r or Vx) as the underlying fitness function

    Quantum light transport in phase-separated Anderson localization fiber

    Get PDF
    Anderson localization, a strong localization effect that prevents wave diffusion, is fundamentally important in manipulating wave propagation in a disordered medium. This work uses a phase separated glass Anderson localization optical fiber and demonstrates quantum light transport, which shows the potential for transmission of high dimensional quantum information, thereby enabling quantum imaging and quantum communication applications.Propagation of light by Anderson localization has been demonstrated in micro-nano-structured fibers. In this work, we introduce a phase separated glass Anderson localization optical fiber for quantum applications. By using a spontaneous parametric down-conversion source, multi-photon detection with a single-photon avalanche diode array camera, and signal post-processing techniques, we demonstrate quantum light transport, where spatial correlations between photon pairs are preserved after propagation. In order to better understand and improve light transport, we study light localization, observing a dependence on wavelength. Our results indicate that the proposed phase separated fiber may become an effective platform for quantum imaging and communication

    What best animal science teachers do

    Get PDF
    Great teachers have the extraordinary ability to inspire and motivate even those students who resist learning. The top educators are knowledgeable not only about the content of the course they are teaching but also of the information, literature, and practice of instructional delivery to their audience. Many exemplary educators have been profiled and studied; however, there is a paucity of information pertaining to how the top animal science teachers teach. The objective of this study was to identify and describe characteristics of award-winning animal science teachers. The inclusion criterion for selecting faculty was being bestowed an excellence in teaching award through their professional organization. Each teacher answered a series of questions about themselves, their students, and the class being taught. Lecture was captured using a digital all-inclusive camera and later analyzed for pedagogical trends and instructor–student interactions. Despite a variety of topics being taught by award-winning teachers, there were multiple trends emerging from their classrooms. Common events included reviewing highlights of previous lectures, distributing something to students, posing questions during class, and calling on students by name. Each teacher taught differently, but they all understood their audience; they grasped the subject matter and most importantly, they valued students learning. Collectively, these findings can be utilized and applied by animal science teachers in their own environments in an attempt to foster improved student learning through excellent teaching

    The Economic Consequences of Social-Network Structure

    Full text link
    We survey the literature on the economic consequences of the structure of social networks. We develop a taxonomy of "macro" and "micro" characteristics of social-interaction networks and discuss both the theoretical and empirical findings concerning the role of those characteristics in determining learning, diffusion, decisions, and resulting behaviors. We also discuss the challenges of accounting for the endogeneity of networks in assessing the relationship between the patterns of interactions and behaviors

    Correlated response in placental efficiency in swine selected for an index of components of litter size

    Get PDF
    The objective of this study was to evaluate correlated response in placental efficiency to selection for components of litter size. Fourteen generations of selection had resulted in a difference between lines of three fully formed piglets at birth. Gilts from a line selected for an index of components of litter size (S, n =33) and a randomly selected control (C, n =27) were observed at farrowing. At delivery, the umbilical cord of each piglet was double tagged with identically numbered mouse ear tags to allow the piglet’s weight to be matched to the corresponding placental weight. Litter size, placental weight, birth weight, and placental vascularity were recorded. Litter size was higher (12.0 ±&#;0.7 vs 7.9 ±&#;0.7) in S than in C (P \u3c&#;0.001). Line differences in placental vascularity were not significant with or without adjustment for litter size (P =&#;0.45 and 0.39, respectively). Correlated response to selection for components of litter size resulted in a reduced birth weight (S 82.6% of C, P \u3c&#;0.001) and a reduced placental weight (S 90.9% of C, P =&#;0.11). After adjusting for litter size, line differences in neither placental weight nor birth weight were significant (P =&#;0.40 and 0.07, respectively), which indicates that the reduction in birth weight was, for the most part, due to the increase in litter size. The result of the difference in the magnitude of the change for both weights was that placental efficiency, measured as the ratio of birth weight:placental weight was 0.43 higher in C (P=&#;0.05). Adjustment for litter size increased the difference in placental efficiency to 0.52 (P =&#;0.02). Since a significant difference in litter size favoring the selected line was observed, we hypothesize that this physiological response was achieved through mechanisms other than improved placental efficiency

    Direct responses to selection for increased litter size, decreased age at puberty, or random selection following selection for ovulation rate in swine

    Get PDF
    Nine generations of selection for high ovulation rate were followed by two generations of random selection and then eight generations of selection for increased litter size at birth, decreased age at puberty, or continued random selection in the high ovulation rate line. A control line was maintained with random selection. Line means were regressed on generation number and on cumulative selection differentials to estimate responses to selection and realized heritabilities. Genetic parameters also were estimated by mixedmodel procedures, and genetic trends were estimated with an animal model. Response to selection for ovulation rate was about 3.7 eggs. Response in litter size to selection for ovulation rate was .089 +/- .058 pigs per generation. Average differences between the high ovulation rate and control lines over generations 10 to 20 were 2.86 corpora lutea and .74 pigs (P less than .05). The regression estimate of total response to selection for litter size was 1.06 pigs per litter (P less than .01), and the realized heritability was .15 +/- .05. When the animal model was used, the estimate of response was .48 pigs per litter. Total response in litter size to selection for ovulation rate and then litter size was estimated to be 1.8 and 1.4 pigs by the two methods. Total response to selection for decreased age at puberty was estimated to be -15.7 d (P less than .01) when data were analyzed by regression (realized heritability of .25 +/- .05) and -17.1 d using the animal model. No changes in litter size occurred in the line selected for decreased age at puberty. Analyses by regression methods and mixed-model procedures gave similar estimates of responses and very similar estimates of heritabilities
    corecore