51 research outputs found

    Mutation screening of retinal dystrophy patients by targeted capture from tagged pooled DNAs and next generation sequencing.

    Get PDF
    Purpose: Retinal dystrophies are genetically heterogeneous, resulting from mutations in over 200 genes. Prior to the development of massively parallel sequencing, comprehensive genetic screening was unobtainable for most patients. Identifying the causative genetic mutation facilitates genetic counselling, carrier testing and prenatal/pre-implantation diagnosis, and often leads to a clearer prognosis. In addition, in a proportion of cases, when the mutation is known treatment can be optimised and patients are eligible for enrolment into clinical trials for gene-specific therapies. Methods: Patient genomic DNA was sheared, tagged and pooled in batches of four samples, prior to targeted capture and next generation sequencing. The enrichment reagent was designed against genes listed on the RetNet database (July 2010). Sequence data were aligned to the human genome and variants were filtered to identify potential pathogenic mutations. These were confirmed by Sanger sequencing. Results: Molecular analysis of 20 DNAs from retinal dystrophy patients identified likely pathogenic mutations in 12 cases, many of them known and/or confirmed by segregation. These included previously described mutations in ABCA4 (c.6088C>T,p.R2030*; c.5882G>A,p.G1961E), BBS2 (c.1895G>C,p.R632P), GUCY2D (c.2512C>T,p.R838C), PROM1 (c.1117C>T,p.R373C), RDH12 (c.601T>C,p.C201R; c.506G>A,p.R169Q), RPGRIP1 (c.3565C>T,p.R1189*) and SPATA7 (c.253C>T,p.R85*) and new mutations in ABCA4 (c.3328+1G>C), CRB1 (c.2832_2842+23del), RP2 (c.884-1G>T) and USH2A (c.12874A>G,p.N4292D). Conclusions: Tagging and pooling DNA prior to targeted capture of known retinal dystrophy genes identified mutations in 60% of cases. This relatively high success rate may reflect enrichment for consanguineous cases in the local Yorkshire population, and the use of multiplex families. Nevertheless this is a promising high throughput approach to retinal dystrophy diagnostics

    Variation in Cooperative Behaviour within a Single City

    Get PDF
    Human cooperative behaviour, as assayed by decisions in experimental economic dilemmas such as the Dictator Game, is variable across human populations. Within-population variation has been less well studied, especially within industrial societies. Moreover, little is known about the extent to which community-level variation in Dictator Game behaviour relates to community-level variation in real-world social behaviour. We chose two neighbourhoods of the city of Newcastle upon Tyne that were similar in most regards, but at opposite ends of the spectrum in terms of level of socioeconomic deprivation. We administered Dictator Games to randomly-selected residents, and also gathered a large number of more naturalistic measures of cooperativeness. There were dramatic differences in Dictator Game behaviour between the two neighbourhoods, with the mean allocation to the other player close to half the stake in the affluent neighbourhood, and close to one tenth of the stake in the deprived neighbourhood. Moreover, the deprived neighbourhood was also characterised by lower self-reported social capital, higher frequencies of crime and antisocial behaviour, a higher frequency of littering, and less willingness to take part in a survey or return a lost letter. On the other hand, there were no differences between the neighbourhoods in terms of the probability of helping a person who dropped an object, needed directions to a hospital, or needed to make change for a coin, and people on the streets were less likely to be alone in the deprived neighbourhood than the affluent one. We conclude that there can be dramatic local differences in cooperative behaviour within the same city, and that these need further theoretical explanation

    Genome-Wide Analysis of MΓΌller Glial Differentiation Reveals a Requirement for Notch Signaling in Postmitotic Cells to Maintain the Glial Fate

    Get PDF
    Previous studies have shown that MΓΌller glia are closely related to retinal progenitors; these two cell types express many of the same genes and after damage to the retina, MΓΌller glia can serve as a source for new neurons, particularly in non-mammalian vertebrates. We investigated the period of postnatal retinal development when progenitors are differentiating into MΓΌller glia to better understand this transition. FACS purified retinal progenitors and MΓΌller glia from various ages of Hes5-GFP mice were analyzed by Affymetrix cDNA microarrays. We found that genes known to be enriched/expressed by MΓΌller glia steadily increase over the first three postnatal weeks, while genes associated with the mitotic cell cycle are rapidly downregulated from P0 to P7. Interestingly, progenitor genes not directly associated with the mitotic cell cycle, like the proneural genes Ascl1 and Neurog2, decline more slowly over the first 10–14 days of postnatal development, and there is a peak in Notch signaling several days after the presumptive MΓΌller glia have been generated. To confirm that Notch signaling continues in the postmitotic MΓΌller glia, we performed in situ hybridization, immunolocalization for the active form of Notch, and immunofluorescence for BrdU. Using genetic and pharmacological approaches, we found that sustained Notch signaling in the postmitotic MΓΌller glia is necessary for their maturation and the stabilization of the glial identity for almost a week after the cells have exited the mitotic cell cycle

    New insights into the synergism of nucleoside analogs with radiotherapy

    Get PDF
    Nucleoside analogs have been frequently used in combination with radiotherapy in the clinical setting, as it has long been understood that inhibition of DNA repair pathways is an important means by which many nucleoside analogs synergize. Recent advances in our understanding of the structure and function of deoxycytidine kinase (dCK), a critical enzyme required for the anti-tumor activity for many nucleoside analogs, have clarified the mechanistic role this kinase plays in chemo- and radio-sensitization. A heretofore unrecognized role of dCK in the DNA damage response and cell cycle machinery has helped explain the synergistic effect of these agents with radiotherapy. Since most currently employed nucleoside analogs are primarily activated by dCK, these findings lend fresh impetus to efforts focused on profiling and modulating dCK expression and activity in tumors. In this review we will briefly review the pharmacology and biochemistry of the major nucleoside analogs in clinical use that are activated by dCK. This will be followed by discussions of recent advances in our understanding of dCK activation via post-translational modifications in response to radiation and current strategies aimed at enhancing this activity in cancer cells

    Pregnane X Receptor and Yin Yang 1 Contribute to the Differential Tissue Expression and Induction of CYP3A5 and CYP3A4

    Get PDF
    The hepato-intestinal induction of the detoxifying enzymes CYP3A4 and CYP3A5 by the xenosensing pregnane X receptor (PXR) constitutes a key adaptive response to oral drugs and dietary xenobiotics. In contrast to CYP3A4, CYP3A5 is additionally expressed in several, mostly steroidogenic organs, which creates potential for induction-driven disturbances of the steroid homeostasis. Using cell lines and mice transgenic for a CYP3A5 promoter we demonstrate that the CYP3A5 expression in these organs is non-inducible and independent from PXR. Instead, it is enabled by the loss of a suppressing yin yang 1 (YY1)-binding site from the CYP3A5 promoter which occurred in haplorrhine primates. This YY1 site is conserved in CYP3A4, but its inhibitory effect can be offset by PXR acting on response elements such as XREM. Taken together, the loss of YY1 binding site from promoters of the CYP3A5 gene lineage during primate evolution may have enabled the utilization of CYP3A5 both in the adaptive hepato-intestinal response to xenobiotics and as a constitutively expressed gene in other organs. Our results thus constitute a first description of uncoupling induction from constitutive expression for a major detoxifying enzyme. They also suggest an explanation for the considerable tissue expression differences between CYP3A5 and CYP3A4

    Negative Regulation of Endogenous Stem Cells in Sensory Neuroepithelia: Implications for Neurotherapeutics

    Full text link
    Stem cell therapies to treat central nervous system (CNS) injuries and diseases face many obstacles, one of which is the fact that the adult CNS often presents an environment hostile to the development and differentiation of neural stem and progenitor cells. Close examination of two regions of the nervous system – the olfactory epithelium (OE), which regenerates, and the neural retina, which does not – have helped identify endogenous signals, made by differentiated neurons, which act to inhibit neurogenesis by stem/progenitor cells within these tissues. In this chapter, we provide background information on these systems and their neurogenic signaling systems, with the goal of providing insight into how manipulation of endogenous signaling molecules may enhance the efficacy of stem cell neurotherapeutics
    • …
    corecore