10,819 research outputs found

    Experimental and theoretical study of shuttle lee-side heat transfer rates

    Get PDF
    The experimental program which was conducted in the Calspan 96-inch hypersonic shock tunnel to investigate what effect the windward surface temperature had on the heat transfer to the leeward surface of the space shuttle orbiter is discussed. Heat-transfer distributions, surface-pressure distributions, and schlieren photographs were obtained for an 0.01-scale model of the 139 configuration space shuttle orbiter at angles-of-attack of 30 and 40 deg. Similar data were obtained for an 0.01 scale wingless model of the 139 configuration at angles-of-attack of 30 and 90 deg. Data were obtained for Mach numbers from Reynolds numbers, and surface temperatures and compared with theoretical results

    The Effects Of Rapport-Building Style on Children’s Reports of a Staged Event

    Get PDF
    Three- to 9-year-old children (N = 144) interacted with a photographer and were interviewed about the event either a week or a month later. The informativeness and accuracy of information provided following either open-ended or direct rapport building were compared. Children in the open-ended rapport-building condition provided more accurate reports than children in the direct rapport-building condition after both short and long delays. Open-ended rapport-building led the 3- to 4-year-olds to report more errors in response to the first recall question about the event, but they went on to provide more accurate reports in the rest of the interview than counterparts in the direct rapport-building condition. These results suggest that forensic interviewers should attempt to establish rapport with children using an open-ended style

    Gamma-Ray Bursts as a Probe of the Very High Redshift Universe

    Get PDF
    We show that, if many GRBs are indeed produced by the collapse of massive stars, GRBs and their afterglows provide a powerful probe of the very high redshift (z > 5) universe.Comment: To appear in Proc. of the 5th Huntsville Gamma-Ray Burst Symposium, 5 pages, LaTe

    Physicochemical properties of concentrated Martian surface waters

    Get PDF
    Understanding the processes controlling chemical sedimentation is an important step in deciphering paleoclimatic conditions from the rock records preserved on both Earth and Mars. Clear evidence for subaqueous sedimentation at Meridiani Planum, widespread saline mineral deposits in the Valles Marineris region, and the possible role of saline waters in forming recent geomorphologic features all underscore the need to understand the physical properties of highly concentrated solutions on Mars in addition to, and as a function of, their distinct chemistry. Using thermodynamic models predicting saline mineral solubility, we generate likely brine compositions ranging from bicarbonate-dominated to sulfate-dominated and predict their saline mineralogy. For each brine composition, we then estimate a number of thermal, transport, and colligative properties using established models that have been developed for highly concentrated multicomponent electrolyte solutions. The available experimental data and theoretical models that allow estimation of these physicochemical properties encompass, for the most part, much of the anticipated variation in chemistry for likely Martian brines. These estimates allow significant progress in building a detailed analysis of physical sedimentation at the ancient Martian surface and allow more accurate predictions of thermal behavior and the diffusive transport of matter through chemically distinct solutions under comparatively nonstandard conditions

    Distributional fixed point equations for island nucleation in one dimension: a retrospective approach for capture zone scaling

    Get PDF
    The distributions of inter-island gaps and captures zones for islands nucleated on a one-dimensional substrate during submonolayer deposition are considered using a novel retrospective view. This provides an alternative perspective on why scaling occurs in this continuously evolving system. Distributional fixed point equations for the gaps are derived both with and without a mean field approximation for nearest neighbour gap size correlation. Solutions to the equations show that correct consideration of fragmentation bias justifies the mean field approach which can be extended to provide closed-from equations for the capture zones. Our results compare favourably to Monte Carlo data for both point and extended islands using a range of critical island size i=0,1,2,3i=0,1,2,3. We also find satisfactory agreement with theoretical models based on more traditional fragmentation theory approaches.Comment: 9 pages, 7 figures and 1 tabl

    Gamma-Ray Bursts are Produced Predominately in the Early Universe

    Full text link
    It is known that some observed gamma-ray bursts (GRBs) are produced at cosmological distances and that the GRB production rate may follow the star formation rate. We model the BATSE-detected intensity distribution of long GRBs in order to determine their space density distribution and opening angle distribution. Our main results are: the lower and upper distance limits to the GRB production are z 0.24 and >10, respectively; the GRB opening angle follows an exponential distribution and the mean opening angle is about 0.03 radians; and the peak luminosity appears to be a better standard candle than the total energy of a GRB.Comment: 12 pages, 2 figur

    Bifurcations of periodic orbits with spatio-temporal symmetries

    Get PDF
    Motivated by recent analytical and numerical work on two- and three-dimensional convection with imposed spatial periodicity, we analyse three examples of bifurcations from a continuous group orbit of spatio-temporally symmetric periodic solutions of partial differential equations. Our approach is based on centre manifold reduction for maps, and is in the spirit of earlier work by Iooss (1986) on bifurcations of group orbits of spatially symmetric equilibria. Two examples, two-dimensional pulsating waves (PW) and three-dimensional alternating pulsating waves (APW), have discrete spatio-temporal symmetries characterized by the cyclic groups Z_n, n=2 (PW) and n=4 (APW). These symmetries force the Poincare' return map M to be the nth iterate of a map G: M=G^n. The group orbits of PW and APW are generated by translations in the horizontal directions and correspond to a circle and a two-torus, respectively. An instability of pulsating waves can lead to solutions that drift along the group orbit, while bifurcations with Floquet multiplier +1 of alternating pulsating waves do not lead to drifting solutions. The third example we consider, alternating rolls, has the spatio-temporal symmetry of alternating pulsating waves as well as being invariant under reflections in two vertical planes. This leads to the possibility of a doubling of the marginal Floquet multiplier and of bifurcation to two distinct types of drifting solutions. We conclude by proposing a systematic way of analysing steady-state bifurcations of periodic orbits with discrete spatio-temporal symmetries, based on applying the equivariant branching lemma to the irreducible representations of the spatio-temporal symmetry group of the periodic orbit, and on the normal form results of Lamb (1996). This general approach is relevant to other pattern formation problems, and contributes to our understanding of the transition from ordered to disordered behaviour in pattern-forming systems

    Coherent vibrations of submicron spherical gold shells in a photonic crystal

    Full text link
    Coherent acoustic radial oscillations of thin spherical gold shells of submicron diameter excited by an ultrashort optical pulse are observed in the form of pronounced modulations of the transient reflectivity on a subnanosecond time scale. Strong acousto-optical coupling in a photonic crystal enhances the modulation of the transient reflectivity up to 4%. The frequency of these oscillations is demonstrated to be in good agreement with Lamb theory of free gold shells.Comment: Error in Eqs.2 and 3 corrected; Tabl. I corrected; Fig.1 revised; a model that explains the dependence of the oscillation amplitude of the transient reflectivity with wavelength adde

    On the zero set of G-equivariant maps

    Full text link
    Let GG be a finite group acting on vector spaces VV and WW and consider a smooth GG-equivariant mapping f:V→Wf:V\to W. This paper addresses the question of the zero set near a zero xx of ff with isotropy subgroup GG. It is known from results of Bierstone and Field on GG-transversality theory that the zero set in a neighborhood of xx is a stratified set. The purpose of this paper is to partially determine the structure of the stratified set near xx using only information from the representations VV and WW. We define an index s(Σ)s(\Sigma) for isotropy subgroups Σ\Sigma of GG which is the difference of the dimension of the fixed point subspace of Σ\Sigma in VV and WW. Our main result states that if VV contains a subspace GG-isomorphic to WW, then for every maximal isotropy subgroup Σ\Sigma satisfying s(Σ)>s(G)s(\Sigma)>s(G), the zero set of ff near xx contains a smooth manifold of zeros with isotropy subgroup Σ\Sigma of dimension s(Σ)s(\Sigma). We also present a systematic method to study the zero sets for group representations VV and WW which do not satisfy the conditions of our main theorem. The paper contains many examples and raises several questions concerning the computation of zero sets of equivariant maps. These results have application to the bifurcation theory of GG-reversible equivariant vector fields
    • 

    corecore