96 research outputs found

    EFFECTS OF AGEING ON GAIT COMPLEXITY

    Get PDF
    Ageing alters gait patterns that influences the control mechanism of human movement. The aim of this study was to identify the age-related differences in complexity of gait kinematics. Gait is a fundamental but complex action, and loss of complexity has been suggested with ageing. In this study multiscale entropy (MSE) analysis was used to investigate complexity in gait. Whole body kinematic data for 10 younger adults (21±1.84 years old) and 10 older adults (62.7±2.2 years old) running at 9 km/h on the treadmill for 2 minutes were analysed. Body centre of mass (CoM) were calculated. MSE of CoM position, and ankle, knee and hip angles were estimated. Hip angular displacement exhibited higher MSE (higher complexity) compared to the CoM position, ankle and knee angular displacement. MSE increased from ankle to knee to hip. MSE of the Hip was significantly lower for the older compared to the younger group, but MSE was not different between young and old participants for other variables. Loss of complexity may only be observed for some kinematic variables, which is a key point to consider for future work applying these techniques to understand gait changes with age

    Bayesian adaptive designs for multi-arm trials:an orthopaedic case study

    Get PDF
    BACKGROUND:Bayesian adaptive designs can be more efficient than traditional methods for multi-arm randomised controlled trials. The aim of this work was to demonstrate how Bayesian adaptive designs can be constructed for multi-arm phase III clinical trials and assess potential benefits that these designs offer. METHODS:We constructed several alternative Bayesian adaptive designs for the Collaborative Ankle Support Trial (CAST), which was a randomised controlled trial that compared four treatments for severe ankle sprain. These designs incorporated response adaptive randomisation (RAR), arm dropping, and early stopping for efficacy or futility. We studied the operating characteristics of the Bayesian designs via simulation. We then virtually re-executed the trial by implementing the Bayesian adaptive designs using patient data sampled from the CAST study to demonstrate the practical applicability of the designs. RESULTS:We constructed five Bayesian adaptive designs, each of which had high power and recruited fewer patients on average than the original designs target sample size. The virtual executions showed that most of the Bayesian designs would have led to trials that declared superiority of one of the interventions over the control. Bayesian adaptive designs with RAR or arm dropping were more likely to allocate patients to better performing arms at each interim analysis. Similar estimates and conclusions were obtained from the Bayesian adaptive designs as from the original trial. CONCLUSIONS:Using CAST as an example, this case study shows how Bayesian adaptive designs can be constructed for phase III multi-arm trials using clinically relevant decision criteria. These designs demonstrated that they can potentially generate earlier results and allocate more patients to better performing arms. We recommend the wider use of Bayesian adaptive approaches in phase III clinical trials. TRIAL REGISTRATION:CAST study registration ISRCTN, ISRCTN37807450. Retrospectively registered on 25 April 2003

    A Nested Randomised Controlled Trial of a Newsletter and Post-it Note Did not Increase Postal Questionnaire Response Rates in a Falls Prevention Trial

    Get PDF
    Background: Attrition (i.e. when participants do not return the questionnaires)is a problem for many randomised controlled trials. The resultant loss of dataleads to a reduction in statistical power and can lead to bias. The aim of thisstudy was to assess whether a pre-notification newsletter and/or a handwrittenor printed Post-it® note sticker, as a reminder, increased postal questionnaireresponse rates for participants of randomised controlled trials.Method: This study was a factorial trial embedded within a trial of afalls-prevention intervention among men and women aged ≥65 years underpodiatric care. Participants were randomised into one of six groups: newsletterplus handwritten Post-it®; newsletter plus printed Post-it®; newsletter only;handwritten Post-it® only; printed Post-it® only; or no newsletter or Post-it®.The results were combined with those from previous embedded randomisedcontrolled trials in a meta-analysis.Results: The 12-month response rate was 803/826 (97.2%) (newsletter 95.1%,no newsletter 99.3%, printed Post-it® 97.5%, handwritten Post-it® 97.1%, noPost-it® 97.1%). Pre-notification with a newsletter had a detrimental effect onresponse rates (adjusted odds ratio (OR), 0.14; 95% CI, 0.04 to 0.48; p<0.01)and time to return the questionnaire (adjusted hazard ratio, 0.86; 95% CI, 0.75to 0.99; p=0.04). No other statistically significant differences were observedbetween the intervention groups on response rates, time to response, and theneed for a reminder.Conclusions: Post-it® notes have been shown to be ineffective in threeembedded trials, whereas the evidence for newsletter reminders is stilluncertain.KeywordsRandomised controlled trial; randomisation; embedded trial; newsletter;Post-it® note; response rat

    The NANOGrav 12.5 yr Data Set: A Computationally Efficient Eccentric Binary Search Pipeline and Constraints on an Eccentric Supermassive Binary Candidate in 3C 66B

    Get PDF
    The radio galaxy 3C 66B has been hypothesized to host a supermassive black hole binary (SMBHB) at its center based on electromagnetic observations. Its apparent 1.05 yr period and low redshift (∼0.02) make it an interesting testbed to search for low-frequency gravitational waves (GWs) using pulsar timing array (PTA) experiments. This source has been subjected to multiple searches for continuous GWs from a circular SMBHB, resulting in progressively more stringent constraints on its GW amplitude and chirp mass. In this paper, we develop a pipeline for performing Bayesian targeted searches for eccentric SMBHBs in PTA data sets, and test its efficacy by applying it to simulated data sets with varying injected signal strengths. We also search for a realistic eccentric SMBHB source in 3C 66B using the NANOGrav 12.5 yr data set employing PTA signal models containing Earth term-only as well as Earth+pulsar term contributions using this pipeline. Due to limitations in our PTA signal model, we get meaningful results only when the initial eccentricity e 0 &lt; 0.5 and the symmetric mass ratio η &gt; 0.1. We find no evidence for an eccentric SMBHB signal in our data, and therefore place 95% upper limits on the PTA signal amplitude of 88.1 ± 3.7 ns for the Earth term-only and 81.74 ± 0.86 ns for the Earth+pulsar term searches for e 0 &lt; 0.5 and η &gt; 0.1. Similar 95% upper limits on the chirp mass are (1.98 ± 0.05) × 109 and (1.81 ± 0.01) × 109 M ☉. These upper limits, while less stringent than those calculated from a circular binary search in the NANOGrav 12.5 yr data set, are consistent with the SMBHB model of 3C 66B developed from electromagnetic observations

    The NANOGrav 15-year Data Set: Search for Anisotropy in the Gravitational-Wave Background

    Full text link
    The North American Nanohertz Observatory for Gravitational Waves (NANOGrav) has reported evidence for the presence of an isotropic nanohertz gravitational wave background (GWB) in its 15 yr dataset. However, if the GWB is produced by a population of inspiraling supermassive black hole binary (SMBHB) systems, then the background is predicted to be anisotropic, depending on the distribution of these systems in the local Universe and the statistical properties of the SMBHB population. In this work, we search for anisotropy in the GWB using multiple methods and bases to describe the distribution of the GWB power on the sky. We do not find significant evidence of anisotropy, and place a Bayesian 95%95\% upper limit on the level of broadband anisotropy such that (Cl>0/Cl=0)<20%(C_{l>0} / C_{l=0}) < 20\%. We also derive conservative estimates on the anisotropy expected from a random distribution of SMBHB systems using astrophysical simulations conditioned on the isotropic GWB inferred in the 15-yr dataset, and show that this dataset has sufficient sensitivity to probe a large fraction of the predicted level of anisotropy. We end by highlighting the opportunities and challenges in searching for anisotropy in pulsar timing array data.Comment: 19 pages, 11 figures; submitted to Astrophysical Journal Letters as part of Focus on NANOGrav's 15-year Data Set and the Gravitational Wave Background. For questions or comments, please email [email protected]

    The NANOGrav 12.5 yr Data Set: Search for Gravitational Wave Memory

    Get PDF
    We present the results of a Bayesian search for gravitational wave (GW) memory in the NANOGrav 12.5 yr data set. We find no convincing evidence for any gravitational wave memory signals in this data set. We find a Bayes factor of 2.8 in favor of a model that includes a memory signal and common spatially uncorrelated red noise (CURN) compared to a model including only a CURN. However, further investigation shows that a disproportionate amount of support for the memory signal comes from three dubious pulsars. Using a more flexible red-noise model in these pulsars reduces the Bayes factor to 1.3. Having found no compelling evidence, we go on to place upper limits on the strain amplitude of GW memory events as a function of sky location and event epoch. These upper limits are computed using a signal model that assumes the existence of a common, spatially uncorrelated red noise in addition to a GW memory signal. The median strain upper limit as a function of sky position is approximately 3.3 × 10−14. We also find that there are some differences in the upper limits as a function of sky position centered around PSR J0613−0200. This suggests that this pulsar has some excess noise that can be confounded with GW memory. Finally, the upper limits as a function of burst epoch continue to improve at later epochs. This improvement is attributable to the continued growth of the pulsar timing array

    The NANOGrav 15-Year Data Set: Detector Characterization and Noise Budget

    Get PDF
    Pulsar timing arrays (PTAs) are galactic-scale gravitational wave detectors. Each individual arm, composed of a millisecond pulsar, a radio telescope, and a kiloparsecs-long path, differs in its properties but, in aggregate, can be used to extract low-frequency gravitational wave (GW) signals. We present a noise and sensitivity analysis to accompany the NANOGrav 15-year data release and associated papers, along with an in-depth introduction to PTA noise models. As a first step in our analysis, we characterize each individual pulsar data set with three types of white noise parameters and two red noise parameters. These parameters, along with the timing model and, particularly, a piecewise-constant model for the time-variable dispersion measure, determine the sensitivity curve over the low-frequency GW band we are searching. We tabulate information for all of the pulsars in this data release and present some representative sensitivity curves. We then combine the individual pulsar sensitivities using a signal-to-noise-ratio statistic to calculate the global sensitivity of the PTA to a stochastic background of GWs, obtaining a minimum noise characteristic strain of 7×10−157\times 10^{-15} at 5 nHz. A power law-integrated analysis shows rough agreement with the amplitudes recovered in NANOGrav's 15-year GW background analysis. While our phenomenological noise model does not model all known physical effects explicitly, it provides an accurate characterization of the noise in the data while preserving sensitivity to multiple classes of GW signals.Comment: 67 pages, 73 figures, 3 tables; published in Astrophysical Journal Letters as part of Focus on NANOGrav's 15-year Data Set and the Gravitational Wave Background. For questions or comments, please email [email protected]

    The NANOGrav 15-year Data Set: Bayesian Limits on Gravitational Waves from Individual Supermassive Black Hole Binaries

    Get PDF
    Evidence for a low-frequency stochastic gravitational wave background has recently been reported based on analyses of pulsar timing array data. The most likely source of such a background is a population of supermassive black hole binaries, the loudest of which may be individually detected in these datasets. Here we present the search for individual supermassive black hole binaries in the NANOGrav 15-year dataset. We introduce several new techniques, which enhance the efficiency and modeling accuracy of the analysis. The search uncovered weak evidence for two candidate signals, one with a gravitational-wave frequency of ∼\sim4 nHz, and another at ∼\sim170 nHz. The significance of the low-frequency candidate was greatly diminished when Hellings-Downs correlations were included in the background model. The high-frequency candidate was discounted due to the lack of a plausible host galaxy, the unlikely astrophysical prior odds of finding such a source, and since most of its support comes from a single pulsar with a commensurate binary period. Finding no compelling evidence for signals from individual binary systems, we place upper limits on the strain amplitude of gravitational waves emitted by such systems.Comment: 23 pages, 13 figures, 2 tables. Accepted for publication in Astrophysical Journal Letters as part of Focus on NANOGrav's 15-year Data Set and the Gravitational Wave Background. For questions or comments, please email [email protected]
    • …
    corecore