
 
 

Bayesian adaptive designs for multi-arm trials
Ryan, Elizabeth; Lamb, Sarah E; Williamson, Esther; Gates, Simon

License:
Creative Commons: Attribution (CC BY)

Document Version
Early version, also known as pre-print

Citation for published version (Harvard):
Ryan, E, Lamb, SE, Williamson, E & Gates, S 2019, 'Bayesian adaptive designs for multi-arm trials: an
orthopaedic case study', Trials.

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
Ryan, E, Lamb, SE, Williamson, E & Gates, S 2019, 'Bayesian adaptive designs for multi-arm trials: an orthopaedic case study'. This is a
preprint article submitted to Trials.

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•	Users may freely distribute the URL that is used to identify this publication.
•	Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•	User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•	Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 13. Nov. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Birmingham Research Portal

https://core.ac.uk/display/232982573?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://research.birmingham.ac.uk/portal/en/publications/bayesian-adaptive-designs-for-multiarm-trials(f99f5a7f-a044-45e8-bd37-4c16ceef6111).html


1 
 

Bayesian adaptive designs for multi-arm trials: an 
orthopaedic case study 

Elizabeth G Ryan1*, Sarah E Lamb2,3, Esther Williamson2, and Simon Gates1 

*Corresponding author. Email: E.G.Ryan@bham.ac.uk 

1Cancer Research UK Clinical Trials Unit, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, 

UK B15 2TT 

2Centre for Rehabilitation Research, Nuffield Department of Orthopaedics, Rheumatology & Musculoskeletal Sciences 

(NDORMS), Botnar Research Centre, University of Oxford, Oxford, UK OX3 7LD 

3College of Medicine and Health, University of Exeter, Exeter, UK EX1 2LU 

 

Abstract  

Background: Bayesian adaptive designs can be more efficient than traditional methods for multi-arm 

randomised controlled trials. The aim of this work was to demonstrate how Bayesian adaptive 

designs can be constructed for multi-arm phase III clinical trials and assess potential benefits that 

these designs offer. 

Methods: We constructed several alternative Bayesian adaptive designs for the Collaborative Ankle 

Support Trial (CAST), which was a randomised controlled trial that compared four treatments for 

severe ankle sprain. These incorporated response adaptive randomisation, arm dropping, and early 

stopping for efficacy or futility. We studied the Bayesian designs’ operating characteristics via 

simulation. We then virtually re-executed the trial by implementing the Bayesian adaptive designs 

using patient data sampled from the CAST study to demonstrate the practical applicability of the 

designs. 

Results: We constructed five Bayesian adaptive designs, each of which had high power and recruited 

fewer patients on average than the original design’s target sample size. The virtual executions 

mailto:E.G.Ryan@bham.ac.uk
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showed that most of the Bayesian designs would have led to trials that declared superiority of one of 

the interventions over the control. Bayesian adaptive designs with RAR or arm dropping were more 

likely to allocate patients to better performing arms at each interim analysis. Similar estimates and 

conclusions were obtained from the Bayesian adaptive designs as from the original trial. 

Conclusions: Using CAST as an example, this case study found that Bayesian adaptive designs can be 

constructed for phase III multi-arm trials using clinically relevant decision criteria. These designs 

demonstrated that they can potentially generate earlier results and allocate more patients to better-

performing arms. We recommend the wider use of Bayesian adaptive approaches in phase III clinical 

trials. 

Trial registration: CAST study registration ISRCTN, ISRCTN37807450. Registered 25 April 2003, 

retrospectively registered. http://www.isrctn.com/ISRCTN37807450 

Keywords: Bayesian adaptive design; interim analysis; multi-arm trial; response adaptive 

randomisation; arm dropping; monitoring; orthopaedic; emergency medicine; randomised 

controlled trials; phase III 

 

Background 

The traditional phase III trial design involves randomising patients to one of two arms, often with 

equal probability of allocation. The sample size is calculated using frequentist methods, which 

involve assuming a particular treatment effect and type I error rate to achieve a particular level of 

power. Phase III trials generally require large sample sizes, have long duration, and many are 

declared “unsuccessful” due to a perceived lack of difference between treatment arms [1]. For 

decades, statisticians have been developing more efficient methods for designing clinical trials, yet 

the majority of trials continue to use traditional methods. 

 

http://www.isrctn.com/ISRCTN37807450
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Adaptive trial designs have the potential to allow trials to answer their questions more efficiently, 

particularly for multi-arm trials, by enabling key operational components to be altered based on 

analyses of accumulated data. All possible decisions and adaptations must be specified before the 

trial commences, as well as the decision criteria. Potential adaptations in multi-arm trials include: 

stopping early for high probability of efficacy or futility; arm dropping; altering the randomisation 

probabilities between arms, known as outcome or response adaptive randomisation.  

When implementing response adaptive randomisation (RAR), the probability of being assigned to 

each treatment arm is not fixed and may be altered at each interim analysis based on the accrued 

outcome data. For instance, the probability of being assigned to an arm could increase when the 

accumulated outcome data suggest that the treatment arm is superior, and thus maximises the 

number of patients receiving the better treatment. Arm dropping may be performed in multi-arm 

trials to remove an arm that does not appear to be effective. There is no globally optimal method for 

patient allocation in multi-arm trials and the choice of method depends on the aims and setting of 

the trial, as some allocation methods may be more practical than others. It is also advantageous to 

have planned interim analyses so that if the treatment effect is large and there is a high probability 

of claiming superiority, or conversely, if the treatment effect is very small or non-existent, then the 

trial can be stopped early. 

Further advantages can be gained by designing a trial within the Bayesian framework. The Bayesian 

approach allows previous information on the treatment effect or response to be incorporated into 

the design via the prior distribution. The prior is updated as data are observed in the trial to become 

a posterior distribution. The posterior distribution is calculated at each interim analysis to 

incorporate current information. The posterior distribution provides probabilistic statements about 

the values of various measures of interest, such as the treatment effect, adverse event rates, or arm 

with the maximum response. For instance, one could obtain from the posterior distribution the 

probability that the relative risk is less than 1. The posterior may be used to drive the decisions at 
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the interim analyses, such as whether to stop early for efficacy or drop an arm. The prior and 

posterior distributions also account for uncertainty in the unknown values of the measures of 

interest. 

Bayesian adaptive designs have often been used in early phase trials, but there are few published 

phase III trials that have used a Bayesian adaptive approach from the design phase (e.g., [2-4]). In 

this work we will explore how Bayesian adaptive designs could be constructed for an emergency 

medicine (orthopaedic) multi-arm trial and examine the potential benefits that these designs may 

offer. 

 

Methods 

Case Study 

The Collaborative Ankle Support Trial (CAST; [5-7]) was a pragmatic, individually randomised 

controlled trial (RCT) that compared the effectiveness of three types of mechanical ankle support 

with tubular bandage (control) for patients with severe ankle sprains. The three interventions were: 

Aircast® ankle brace, Bledsoe® boot, and below-knee cast. Patients above 16 years with an acute 

severe ankle sprain who were unable to bear weight, but had no fracture, were recruited from eight 

emergency departments in England. The primary outcome was the quality of ankle function at 12 

weeks post-randomisation as measured by the foot- and ankle-related quality of life subscale (QoL) 

of the Foot and Ankle Outcome Score (FAOS; [8]). The FAOS QoL subscale ranges from 0 (extreme 

symptoms) to 100 (no symptoms). Randomisation occurred 2-3 days after the initial visit to the 

emergency department at a follow up clinical visit.  

 

The CAST study was designed using traditional/frequentist methods and had a fixed design. A target 

sample size of 643 patients was required to provide more than 90% power to detect an absolute 
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difference of 8-10 in the FAOS QoL, assuming a type I error rate of 5% and 20% loss to follow up. The 

minimal clinically important difference (MCID) in the FAOS QoL subscale was specified as a change 

between 8 and 10. The aim of this trial was to identify the best arm for treatment of severe ankle 

sprains to assist in recovery.  

A revised sample size was calculated by the Data Monitoring Committee (DMC) after 100 

participants were recruited and an estimated target of 480-520 participants provided at least 80% 

power to detect the MCID, assuming a type I error rate of 5% [7]. 

The CAST study randomised 584 patients: 144 to tubular bandage, 149 to Bledsoe® boot, 149 to 

Aircast® brace, and 142 to below-knee cast. At 12-weeks post-randomisation, the FAOS QoL was 

estimated to be 53.5 (95% CI 48.4, 58.6) for the tubular bandage arm. Clinically important benefits 

were found at 12 weeks in the FAOS QoL with the below-knee cast compared to the tubular bandage 

(mean difference 8.7; 95% CI 2.4, 15.0), and with the Aircast® brace compared to the tubular 

bandage (mean difference 8; 95% CI 1.8, 14.2). The Bledsoe® boot did not offer a clinically important 

difference over the tubular bandage (mean difference 6.1; 95% CI 0, 12.3). These estimates were 

adjusted for baseline FAOS QoL (standardised using the median as the centre), as well as age and 

sex. 

 

Potential adaptations for Bayesian designs 

In our Bayesian adaptive designs we want to quickly identify the best performing intervention arm. A 

secondary aim is to deliver the best therapy to patients within the trial. Our designs will reward 

better performing arms and remove poorly performing arms. The Bayesian adaptive designs were 

constructed as one-sided superiority studies as we were interested in demonstrating improvement 

over control. 
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To achieve this, the following types of adaptations will be explored: RAR, arm dropping and early 

stopping for either efficacy or lack of benefit (futility). Below we describe how these adaptive 

features have been incorporated into the Bayesian designs, as well as the rules with which these 

adaptations could be implemented. The rules for implementing these adaptations were determined 

based on the input of clinicians, criteria used in previous studies (e.g., [9, 10]) and the results of 

simulations which explored a range of clinically relevant values. Decision thresholds were also 

chosen to optimise probability of trial success, average number of patients randomised, and the 

proportion of patients randomised to the best therapy. Stopping boundaries were also chosen to 

ensure the simulated one-sided type I error rate was <2.5%.  

The Bayesian adaptive designs were constructed by a statistician (EGR) who was independent of 

CAST and was blind to the data and results of the trial until the designs’ operating characteristics had 

been simulated. The designs were constructed using the CAST protocol and discussions were held 

with CAST investigators (SEL and EW) to derive the design parameters and determine how the 

adaptive features could be incorporated to ensure the designs were practically feasible. 

 

Interim analysis schedules and candidate designs 

We investigated a range of interim analysis schedules where adaptations could be performed every 

50, 100 or 200 patients due for their primary outcome assessment (12 weeks post-randomisation). 

We note that operationally, fewer interim analyses are typically preferred. We found that 

performing RAR or arm dropping more frequently increased the probability of trial success and 

decreased the sample size (results not shown), and so we only present the adaptive designs that 

performed RAR or arm dropping every 50 patients. Assessment of early stopping for efficacy or 

futility was performed every 200 patients due for their primary outcome assessment in each 

adaptive design. This was performed less frequently than RAR/arm dropping to control the type I 

error and reduce operational complexity, particularly for the monitoring committees who may not 
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need to meet for randomisation probability updates or arm dropping decisions. A fixed Bayesian 

design was also investigated for comparative purposes. The Bayesian designs explored are described 

in Table 1.  

 

Table 1. Bayesian adaptive designs explored for CAST study 

Design Interim analysis 

schedulea 

Arm allocationb Control allocation Early stopping 

1 None 1:1:1:1 Equal to other arms None 

2 Every 200 patients 1:1:1:1 Equal to other arms Efficacy or 

futility every 

200 patients 

3 Every 50 patients Arm dropping assessed 

at each interim analysis 

Equal to other arms Efficacy or 

futility every 

200 patients 

4 Every 50 patients RAR at each analysis  Matched to best intervention arm Efficacy or 

futility every 

200 patients 

5 Every 50 patients RAR at each analysis Fixed at 40% 

 

Efficacy or 

futility every 

200 patients 

6 Every 50 patients RAR at each analysis No designated control; tubular bandage 

is treated as an intervention arm  

Efficacy or 

futility every 

200 patients  

aAt number patients due for primary outcome follow up (at 12 weeks post-randomisation); b RAR = Response adaptive randomisation 

 

Response adaptive randomisation (RAR) 

Prior to the first interim analysis, equal randomisation (ER) was used. At each interim analysis the 

randomisation probabilities were updated to be proportional to the posterior probability that the 
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arm was the best intervention arm. The randomisation probabilities were then adjusted to sum to 

one. Enrolment was suspended to arms that had a randomisation probability < 0.1. The suspended 

arm(s) could re-enter the randomisation allocation at later interim analyses if the randomisation 

probabilities crossed above the threshold.  

We explored designs that employed different approaches for control arm allocation in RAR. First we 

simulated trials in which the control allocation was matched to the intervention arm with the highest 

probability of allocation. This maximises the power for the comparison of the best arm to the 

control. We then assumed a fixed control allocation of approximately 40%, which may be preferred 

for logistical reasons. Various fixed allocations for the control were explored via simulation and the 

allocation of 40% was chosen based on the resulting operating characteristics (results not shown). A 

similar optimal control allocation was found in [11] for fixed designs. Finally, we explored a design in 

which the “control” arm (tubular bandage) allocation varied according to its probability of being the 

best arm. In this design, all arms were considered as “interventions” and recruitment to the tubular 

bandage arm could be suspended if it had a low probability of being the best arm (as for the other 

arms). 

 

Arm dropping  

We also investigated the use of permanent arm dropping, where an arm could be dropped if it had a 

low posterior probability (<10%) of being the best arm at an interim analysis. In the arm dropping 

designs, the control arm could not be dropped, but any intervention arm could be dropped. If an 

arm was dropped, the block size was reduced, but the overall maximum sample size was kept the 

same. Equal allocation was used for the remaining arms.  



9 
 

 

Early stopping for efficacy or futility 

Early stopping for efficacy and futility was assessed at interim analyses performed when 200, 400 

and 600 patients were due for their primary outcome assessment visit (12 weeks post-

randomisation) in all adaptive designs.  

For most of the adaptive designs explored (Designs 2-5, Table 1), we allowed early stopping for 

efficacy if there was a fairly large posterior probability of there being a MCID of 8 between the best 

intervention arm and the tubular bandage in the primary outcome (equation 1) and if there was a 

high probability (>90%) that the arm is the best arm (equation 2), i.e., 

Pr(𝜃𝐵𝑒𝑠𝑡 − 𝜃𝑡𝑢𝑏𝑢𝑙𝑎𝑟 𝑏𝑎𝑛𝑑𝑎𝑔𝑒  >  8) >  𝑆𝑖  (1) 

and Pr(𝐵𝑒𝑠𝑡𝑡) >  0.9                                (2) 

where 𝜃𝐵𝑒𝑠𝑡 and 𝜃𝑡𝑢𝑏𝑢𝑙𝑎𝑟 𝑏𝑎𝑛𝑑𝑎𝑔𝑒 are the estimates of the FAOS QoL scores at 12 weeks for the best 

intervention arm and the tubular bandage, respectively; and 𝑆𝑖 is the stopping boundary for efficacy 

at interim analysis i for the comparison of the best arm to the tubular bandage. Pr(𝐵𝑒𝑠𝑡𝑡) is the 

probability that arm t (t = boot, brace, below-knee cast) is the best arm. 

Both criteria (1) and (2) must be met for the trial to stop early for efficacy. The Si values used were 

0.75, 0.7, and 0.6 for interim analyses performed at 200, 400 and 600 patients due for their primary 

outcome visit, respectively. These values were used for Designs 2-5 (Table 1).  The stopping 

boundaries were chosen to ensure acceptable power and were clinically relevant values.  

We also defined success criteria for the trial at the final analysis to enable the type I error and power 

to be calculated and compared across the designs. At the final analysis, the trial was declared 

successful for Designs 1-5 if: 

Pr(𝜃𝐵𝑒𝑠𝑡 − 𝜃𝑡𝑢𝑏𝑢𝑙𝑎𝑟 𝑏𝑎𝑛𝑑𝑎𝑔𝑒  >  8) >  0.5  (3) 
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If this criterion was not met then the trial was declared unsuccessful. 

For Designs 2-5, early stopping for statistical futility was based on having a small posterior 

probability that the best arm is better than the tubular bandage, i.e., 

 Pr(𝜃𝐵𝑒𝑠𝑡 > 𝜃𝑡𝑢𝑏𝑢𝑙𝑎𝑟 𝑏𝑎𝑛𝑑𝑎𝑔𝑒 ) < 0.05   (4) 

 

Design 6 (Table 1) used RAR where allocation to the tubular bandage arm could vary according to its 

probability of being the best arm. This design focussed on identifying the best arm overall with a 

high probability rather than looking for a MCID between intervention arms and tubular bandage. 

Therefore, early stopping for efficacy or futility was based on the probability of being the best arm, 

evaluated at the best arm. That is, Pr(𝐵𝑒𝑠𝑡𝑡=𝑏𝑒𝑠𝑡 𝑎𝑟𝑚). If this probability was <0.1 at interim 

analyses performed at 200, 400 or 600 patients, then the trial was stopped early for futility. If this 

probability was >0.975 at 200 patients, >0.95 at 400 patients, or >0.925 at 600 patients, then the 

trial was stopped early for efficacy. The trial was deemed to be successful at the final analysis if this 

probability was >0.9.  

 

Simulation Settings 

Simulations of the designs were performed in FACTS (version 6.2 [12]) so that the operating 

characteristics of each design could be studied.  We used a recruitment rate of 5 patients/week and 

assumed it took 12 weeks to reach this recruitment rate. We also explored recruitment rates of 25 

and 56 patients/week (assuming it took 12 weeks to reach these recruitment rates; see Appendix). 

We used the same dropout rate that the original study design assumed (20%). The posterior 

distribution was estimated for each treatment arm, and the FAOS QoL estimates at 12 weeks were 

adjusted for the baseline scores. Details on the model and priors used are given in Additional File 1. 
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Prior to the start of the CAST study there was uncertainty regarding the effect size and FAOS QoL 

values, and so we simulated a range of different true effect size scenarios for each design. The 

different scenarios explored for the primary outcome in each arm are given in Table 2. 

Table 2. Scenarios explored for Bayesian designs 

Scenario Control/tubular 

bandage FAOS QoL 

Boot FAOS QoL Brace FAOS QoL Below-knee Cast 

FAOS QoL 

Null 50 50 50 50 

One works, 10 more 50 50 50 60 

One works, 5 more 50 50 50 55 

Better, Best 50 55 60 65 

One worse, others work 50 45 55 60 

All work, two similar 50 55 60 60 

 

We simulated 10,000 trials for each scenario in Table 2 for each design. The type I error was 

estimated using the proportion of simulations that incorrectly declared the trial to be successful 

when no difference was present in the true primary outcome scores (null scenario above). The 

power was calculated as the proportion of simulations that declared the trial to be successful, when 

at least one treatment was superior in the true FAOS QoL score.  

We wanted to accurately estimate the response of the arm that was chosen to be the best. Some 

studies have shown that RAR can lead to a larger estimation bias compared to ER (e.g., [13]). To 

quantify bias in the estimates of the best arm responses, we use the mean square error (MSE) of 

estimation, where the expectation is taken over the space of successful trials.   
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Virtual Re-execution of Designs 

A virtual re-execution of the CAST study was performed by implementing the Bayesian designs using 

the CAST data to illustrate the application and potential benefits of the Bayesian adaptive designs on 

a real-world trial. We maintained the original enrolment dates for the CAST patients in the re-

execution. Since Designs 3-6 incorporated arm dropping or RAR every 50 patients, the required 

allocations for these designs are unlikely to match the allocations that actually occurred in the CAST 

data. Therefore, at each interim analysis we used the updated randomisation probabilities to obtain 

allocations for the next 50 patients and then randomly sampled (with replacement) a CAST patient 

for the re-execution dataset that had a matching treatment allocation and was randomised into the 

original CAST study within ±6 weeks of the re-execution enrolment date. To avoid bias, for each 

design the trial was virtually re-executed 1000 times by drawing data from the CAST dataset and 

performing the interim analyses.  A flow diagram of the re-sampling and interim analysis process for 

Designs 3-6 is given in Figure 1. Further details are given in Additional File 1. 

Designs 1 and 2 had fixed arm allocation probabilities throughout the trial, and so we could use the 

actual CAST data in the virtual executions of these designs without the need for re-sampling. The 

results of these analyses are displayed in Additional File 2. We also used a simplified version of the 

process described in Figure 1 to resample many datasets from the CAST data to virtually execute 

Designs 1 and 2 so that their results were more comparable to those from Designs 3-6. This also 

enabled us to examine potential gains in efficiency over a range of datasets. 

Since the CAST study only recruited 584 patients we were unable to perform all planned interim 

analyses. The last interim analysis occurred at 400 patients for Design 2 and 550 patients for Designs 

3-6. The final analysis occurred once follow-up data had been collected for the 584 patients. The re-

executions were performed in R (version 3.5.0; R Foundation for Statistical Computing) and the rjags 

package [14] was used to perform the Bayesian analyses. We used a similar approach to [15] to 

perform the virtual re-executions and re-sampling of patients. 
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Figure 1. Flow diagram showing the process for the virtual re-execution of Designs 3-6. Response adaptive 

randomisation or arm dropping was performed every 50 patients until the final analysis (at N=584). Early 

stopping for efficacy or futility was assessed every 200 patients. The process depicted in this figure was 

repeated 1000 times. 
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Results  

Operating characteristics for Bayesian designs 

Select operating characteristics for the Bayesian designs are presented in Table 3 and Figure 2. 

Further operating characteristics are given in Additional File 2. Boxplots of the distribution of the 

allocations to the control and best arm for each scenario across the 10, 000 simulations are 

presented in Figure 3. The effect of using a faster recruitment rate is summarised in Additional File 3. 

The Bayesian adaptive designs generally offered a decreased average sample size and increased 

power/probability of trial success across the scenarios explored, compared to the Bayesian fixed 

design. There was little variation in the sample size for the null scenario across the Bayesian designs, 

and the simulated type I error was approximately 0 for the majority of designs under this scenario. 

There was also little variation in the sample size and probability of having a successful trial when a 

difference of 5 was assumed between the tubular bandage and the best arm for each design, apart 

from Bayesian Design 6, which had a slightly smaller average sample size and a higher probability of 

having a successful trial.  

Bayesian Design 6 had the lowest average sample size and highest probability of success for the 

“One works, 10 more” and “One worse, others work” scenarios; the other adaptive designs had 

similar average sample sizes and probability of trial success and also offered improvement over the 

fixed design for these scenarios. All designs had high probability of success for the “Better, Best” 

scenario and the average sample size was reduced by incorporating interim analyses (Designs 2-6). 

Bayesian Design 6 did not perform as well as the other designs for the “All work, two similar” 

scenario in terms of the probability of trial success since one arm was not clearly superior. This 

decreased the probability of being the best arm and so the trial was deemed to be “unsuccessful” in 

30% of the simulated trials. 
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We also simulated a scenario where all the intervention arms were inferior to the tubular bandage 

arm (FAOS 50, 45, 45, and 45 for tubular bandage, boot, brace, and below-knee cast, respectively). In 

Designs 1-5, all of the simulated trials were declared to be unsuccessful at the final analysis for this 

scenario and 41.72-58.91% of the simulated trials stopped early for futility (Designs 2-5). For this 

scenario Design 6 had similar results to the “One arm works, 5 more” scenario since it did not 

consider the tubular bandage to be a control arm here and had one arm superior by an FAOS of 5. 

The probability of having a successful trial and average sample sizes were similar between Bayesian 

Designs 3-5 across the scenarios. Design 6 had the lowest average sample size and highest 

probabilities of success when a treatment effect was present and one arm was clearly superior. 

Design 6 did not perform as well as the other adaptive designs when two arms offered a similar 

improvement in the FAOS QoL. Design 6 had different objectives and decision criteria to the other 

Bayesian designs, and so care should be taken when choosing a preferred design since the designs 

are tailored to the aims of the investigators. 

Due to the lack of successful trials in the null and “one arm works, 5 more” scenarios for the majority 

of designs, the MSE was not calculated for these scenarios. The adaptive designs tended to have 

slightly higher MSE than the fixed design, apart from Design 6 which had lower MSE. RAR and arm 

dropping designs had lower MSE compared to the design that just had early stopping for efficacy or 

futility (Design 2).  

For each design, the correct selection of the best arm was made in approximately all of the 

simulated trials, where at least one arm was superior to control (data not shown). From Table 3 and 

Figure 3, it can be seen that, on average, more allocations were given to the best arm under designs 

that incorporated RAR or arm dropping when at least one arm was superior. Equal allocation to the 

treatment arms was achieved in the null scenario for these designs. Design 6 tended to allocate the 

highest proportion of patients to the best arm, followed by Design 5. RAR with control matched to 

best arm (Design 4) tended to have similar allocations to the design that used permanent arm 



16 
 

dropping (Design 3). The designs with RAR or arm dropping (Designs 3-6) had a fairly large variation 

in their allocations to the best arm and the control, and were quite often skewed in their 

distribution. For Design 3, the proportion of arm drops was low for the best arm and high for the 

other arms (Additional File 2). 

[Table 3 here] 

 

Figure 2. Average sample sizes (left column) and probability of trial success (right column) for each design. Each row 

represents a different scenario: a) and b) “Null” scenario; c) and d) “One works, 10 more”; e) and f) “One works, 5 more”; 

g) and h) “Better, Best”; i) and j) “One worse, others work”; k) and l) “All work, two similar”. The type I error is represented 
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in Figure 2(b). The power is given in Figures 2 (d), (f), (h), (j), (l). 

 

 

Figure 3. Allocations across 10,000 simulated trials for tubular bandage (left column) and best arm (right column). Each 

design is represented on the x-axis in each figure and each row represents a scenario: a) and b) “One works, 10 more”; c) 

and d) “One works, 5 more”; e) and f) “Better, Best”; g) and h) “One worse, others work”; i) and j) “All work, two similar” 
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Virtual Re-execution of designs  

Table 4 presents a summary of the virtual re-execution of the CAST study under each Bayesian 

design across the 1000 trials that resampled the CAST study data. 

[Table 4 here] 

The results of the re-executions show that the Bayesian adaptive designs recommended early 

stopping for efficacy in 7.6-25.9% of trial re-executions, with the most frequent early stopping 

occurring in Design 2 which had fixed allocations and only allowed for early stopping of the trial. 

None of the trial re-executions recommended early stopping for futility, since all of the interventions 

performed better than the tubular bandage. At the final analysis for Designs 1-5, 83.5-89.4% of the 

trials were declared successful. Design 6, where decisions were based on the probability of being the 

best arm, had a low proportion (23%) of trials that were declared successful at the final analysis. This 

is due to the fact that the brace and below-knee cast had similar primary outcome scores and both 

performed well compared to the other arms. Thus, one arm was not often declared superior with a 

high probability. For each of the Bayesian designs, the below-knee cast was most frequently 

declared the best arm at the final analysis in the re-executions and thus had the same conclusion as 

the original trial.  

The medians of the posterior estimates for the treatment effects over the 1000 re-executions were 

generally similar to the original frequentist analysis estimates. Designs 4 and 5 (RAR with control 

allocation matched to best arm and RAR with fixed control allocation, respectively) had slightly lower 

estimates of the mean difference between Bledsoe boot and tubular bandage. Design 6 had slightly 

higher estimates of the mean difference between the ankle brace and tubular bandage, and also 

between the below-knee cast and tubular bandage. One should also bear in mind that the re-

executions were performed on re-sampled data from the original dataset, and so the estimates are 

likely to vary slightly. 
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Further summaries of the results and randomisation allocations at each interim analysis for each 

adaptive design are given in Additional File 4. These results show that the randomisation 

probabilities differed between Bayesian designs 4-6 at each interim analysis, and that these RAR 

designs often had quite different allocations to the CAST study, depending on which arm was “the 

best” at that interim analysis. 

Discussion 

Summary 

In this study we have demonstrated how Bayesian adaptive designs can be constructed for Phase III 

multi-arm RCTs. Using an orthopaedic trial as a case study, we outlined the process involved in 

constructing the designs, described the adaptive schemes and stopping rules employed, and 

demonstrated the designs’ behaviour through their operating characteristics across a range of 

scenarios. We also performed virtual executions of the Bayesian designs using data from the CAST 

study to demonstrate the decisions that would be made using the Bayesian designs and the trial 

data. Through use of the Bayesian adaptive approach we were able to make decisions about 

whether to stop the trial early based on the probability of having a MCID, update the randomisation 

allocations according to the probability of being the best arm, and suspend recruitment to arms that 

had a low probability of being the best.  

Based on the operating characteristics, the use of Bayesian adaptive designs for this case study 

generally increased the power and decreased average sample size compared to a fixed design. Use 

of RAR or arm dropping offered increased power compared to an adaptive design that only allowed 

for early stopping when it was assumed that one arm offered a MCID. All designs had low type I 

error and high probabilities to detect a MCID in at least one arm, when it was assumed that a MCID 

was truly present. The correct selection of the best arm was made in approximately all of the 

simulated trials, where at least one arm was superior to control. Use of RAR or arm dropping 
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produced simulated trials that gave more allocations to the best arm when at least one arm was 

superior. Equal allocation occurred when the arms had approximately the same primary outcome 

scores.  

Design 6, whose decisions were made based on the probability of being the best arm, typically 

produced the lowest average sample size and highest power when one arm was assumed to be 

superior. However, this design did not perform well when two arms showed a similar improvement 

compared to the other arms. Design 6 had different objectives and decision criteria to the other 

Bayesian designs, and so care should be taken when choosing a preferred design since the designs 

are tailored to the aims of the investigators. 

The virtual executions of the Bayesian designs using the CAST data showed that early stopping for 

efficacy only occurred in a small proportion of trials and that no trials stopped early for futility. At 

the final analysis >80% of the trials were declared successful in the 1000 executions of Designs 1-5. 

When Design 6 was executed 1000 times using the trial data, only 23% of the trials were declared 

successful at the final analysis, since both the brace and below-knee cast performed similarly well 

and a “best arm” was not declared with a high probability. A benefit of Design 6 was that the tubular 

bandage arm, which was the control arm in the other designs, had smaller allocation probabilities 

which allowed more allocations to better performing arms. The below-knee cast was most often 

declared the best arm at the final analysis in the re-executions, and so the Bayesian designs led to 

the same conclusion as the original trial.  

The decisions made at the interim and final analyses of the Bayesian designs were driven by the 

primary outcome. We did not incorporate other outcomes and are not intending that the 

conclusions generated in this re-execution be used to inform clinical practice or to alter the 

conclusions of the original study.  
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Limitations 

Adaptive designs have great promise for producing trials with better operating characteristics, but 

present a number of practical challenges. Korn and Freidlin [16] provide a summary of some of the 

advantages and disadvantages of different adaptive design elements.  

Adaptive designs require a larger amount of work to build and evaluate potential designs, compared 

to fixed designs, and may take more effort to obtain approval from review boards. Adaptive designs 

can also be more complicated to implement. Performance of the interim analyses and making the 

required adaptations is dependent on being able to collect, enter, clean and analyse data in a timely 

manner, and alter the randomisation system with ease. This requires the trial management team, 

statisticians, programming teams and trial treatment providers/intervention suppliers to be 

responsive to changes that need to be made. These rapid changes may not be possible in all trial 

settings. 

The interim analyses also need to be adequately spaced to allow time for DMCs and Trial Steering 

Committees (TSCs) to meet. Statistically, more frequent interim analyses generally produce better 

operating characteristics for designs that use RAR or arm dropping (e.g., [17]), but frequent interim 

analyses may not always be practical. The DMC/TSC may not necessarily need to meet for every 

interim analysis, e.g., for RAR adaptations, but would need to meet for stopping decisions. 

The types of adaptations that can be made to multi-arm trials are situation-dependent. RAR presents 

difficulties in being able to anticipate and arrange for the delivery of treatments. The original CAST 

study design, which had fixed allocations, allowed the supply of treatment arms (including the 

supply of staffing) to be planned more easily than a design with RAR would. RAR may not always be 

possible due to restrictions on resources for delivering the treatments or delays in collecting the 

primary outcome data. Closure of arms may be practically easier to achieve. Whilst early stopping of 

trials may have benefits for funding agencies, academic trial investigators often do not wish to 

terminate trials early, due to potential loss of research income and staff retention. Changes in 
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funding models are likely to be required to fully take advantage of innovation in trial design, such as 

a minimum study time funded with a mechanism to release funding if full study time is required.  

Additionally, trials that stop early may have little information on the long-term effects of treatment 

or on secondary outcomes, and are likely to produce less precise estimates of the treatment effects. 

The use of RAR remains controversial and some of its properties are not well understood by 

clinicians. RAR has its greatest potential in multi-arm trials but has limited usefulness in two-armed 

trials [18, 19]. Adaptive designs are more susceptible to changes in patient population over time. 

Designs with RAR are robust to moderate changes in population (see [20]), but adaptive designs are 

not appropriate if the patient population changes dramatically during the trial. When evaluating 

adaptive designs, simulation is required to illustrate the operating characteristics and potential 

benefits, and investigate potential biases introduced by each adaptive feature.   

Fairly short follow-up times are required for adaptive designs to offer improved efficiency. Adaptive 

designs are difficult to implement for very fast recruitment rates, particularly for studies that have 

relatively longer follow-up periods, since less information will be available at each interim analysis. 

This poses difficulties for phase III trials since the primary outcome is often based on long-term 

measures, and it may be difficult to design adaptive trials without extending the time frame of 

recruitment to allow for the interim analyses and potential adaptations to occur. Thus there may be 

a trade-off in reduced sample size but increased recruitment time (at a slower recruitment rate) for 

some adaptive trial design contexts. 

In this work we virtually executed each of the proposed Bayesian designs using trial data to illustrate 

their practical applicability. However, in reality, one design would have been chosen and 

implemented, depending on its operating characteristics, practical restraints and the aims of the 

trial. When virtually executing the designs that incorporated arm dropping or RAR, resampling from 

the original trial data was required to obtain the required randomisation allocations. This may lead 

to an underestimation of the uncertainty in the results [10]. We addressed this by re-executing the 
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CAST study 1000 times and resampled patients within each trial. If different datasets had been used, 

different conclusions may have been obtained using these designs.  

We did not simulate the decision making process of a DMC/TSC. We have assumed that the decision 

making process was driven by the primary outcome, but the DMC/TSC would also examine safety 

data and any relevant external evidence. Whilst the role of these committees is to ensure that the 

study protocol is accurately followed, they may also need to make deviations to ensure patient 

safety. For example, RAR may recommend increasing the allocation probability to an arm that has a 

higher rate of adverse events – an event that was not accounted for in the RAR algorithm. 

Alterations to the previously defined adaptations can lead to unknown operating characteristics. 

The Bayesian adaptive designs were constructed as one-sided superiority studies, whereas the 

original CAST study was a two-sided trial.  We were interested in demonstrating improvement over a 

much cheaper control, and felt that a DMC would be unlikely to continue enrolment into a poorly 

performing comparator just to show it is worse. Under most of our Bayesian adaptive designs, if an 

intervention arm performed poorly it would be dropped or have a very low probability of allocation. 

Harm may or may not be reflected in the FAOS QoL score, but the DMC could intervene if any arms 

were causing harm. 

The designs presented here are situation specific and have been tailored to the clinical situation and 

aims of the CAST study. The definition of a successful trial and the level of sufficient evidence 

required to make decisions will differ between researchers and stakeholders, and will depend on the 

consequences of the actions that may be taken. The designs and findings from this work will not 

generalise to all phase III randomised controlled trials, but similar approaches can be used to 

construct Bayesian adaptive designs. We recommend that simulations are used to study the impact 

of each type of adaptive component on the operating characteristics when constructing Bayesian 

adaptive designs for multi-arm trials.  
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Conclusions 

To enable phase III trials to achieve their aims, more efficient methods are required. Innovation in 

clinical trial design is extremely important as it can potentially improve the efficiency, quality of 

knowledge gained, cost and safety of clinical trials. In this work we have demonstrated how Bayesian 

adaptive trials can be designed and implemented for multi-arm phase III trials. Using a published 

example from orthopaedic medicine, we highlight some of the benefits of these designs, particularly 

for multi-arm trials. 
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Table 3. Operating characteristics for Bayesian designs for CAST study 

Designa  Proportion 

stopping 

early for 

efficacy 

Proportion 

stopping 

early for 

futility 

MSE Mean 

proportion 

allocated to 

control 

Mean 

proportion 

allocated 

to boot 

Mean 

proportion 

allocated 

to brace 

Mean 

proportion 

allocated 

to below-

knee cast 

Design 1 Fixed design  

Null (50, 50, 50, 50) NA NA NA 0.25 0.25 0.25 0.25 

One arm works, 10 more (50, 50, 

50, 60) 

NA NA 2.77 0.25 0.25 0.25 0.25 

One arm works, 5 more (50, 50, 50, 

55) 

NA NA NA 0.25 0.25 0.25 0.25 

Better best (50, 55, 60, 65) NA NA 3.29 0.25 0.25 0.25 0.25 

One worse, others work (50, 45, 55, 

60) 

NA NA 2.96 0.25 0.25 0.25 0.25 

All work, two similar (50, 55, 60, 

60) 

NA NA 3.39 0.25 0.25 0.25 0.25 

        

Design 2 Interim analysis every 200 patients, early stopping for efficacy or futility 

Null (50, 50, 50, 50) 0.0063 0.0063 NA 0.25 0.25 0.25 0.25 

One arm works, 10 more (50, 50, 

50, 60) 

0.732 0.732 5.03 0.25 0.25 0.25 0.25 

One arm works, 5 more (50, 50, 50, 

55) 

0.1091 0.1091 NA 0.25 0.25 0.25 0.25 

Better best (50, 55, 60, 65) 0.7953 0.7953 5.11 0.25 0.25 0.25 0.25 

One worse, others work (50, 45, 55, 

60) 

0.6341 0.6341 5.10 0.25 0.25 0.25 0.25 

All work, two similar (50, 55, 60, 

60) 

0.2701 0.2701 5.24 0.25 0.25 0.25 0.25 

        

Design 3 Arm dropping every 50 patients 

Null (50, 50, 50, 50) 0.0025 0.0025 NA 0.36 0.21 0.21 0.21 

One arm works, 10 more (50, 50, 

50, 60) 

0.6919 0.6919 3.68 0.40 0.11 0.11 0.39 
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One arm works, 5 more (50, 50, 50, 

55) 

0.0624 0.0624 NA 0.39 0.13 0.13 0.35 

Better best (50, 55, 60, 65) 0.6843 0.6843 4.16 0.37 0.10 0.19 0.34 

One worse, others work (50, 45, 55, 

60) 

0.6123 0.6123 3.86 0.38 0.07 0.18 0.36 

All work, two similar (50, 55, 60, 

60) 

0.2692 0.2692 3.87 0.36 0.11 0.27 0.26 

        

Design 4 RAR every 50 patients, control matched to best arm 

Null (50, 50, 50, 50) 0.0022 0.0022 NA 0.33 0.22 0.22 0.22 

One arm works, 10 more (50, 50, 

50, 60) 

0.796 0.796 3.56 0.39 0.11 0.11 0.39 

One arm works, 5 more (50, 50, 50, 

55) 

0.0733 0.0733 NA 0.37 0.14 0.14 0.35 

Better best (50, 55, 60, 65) 0.8177 0.8177 4.05 0.36 0.11 0.19 0.35 

One worse, others work (50, 45, 55, 

60) 

0.6872 0.6872 3.67 0.38 0.07 0.18 0.37 

All work, two similar (50, 55, 60, 

60) 

0.2744 0.2744 3.73 0.35 0.12 0.27 0.27 

        

Design 5 RAR every 50 patients, control fixed allocation of 40%  

Null (50, 50, 50, 50) 0.0015 0.0015 NA 0.37 0.21 0.21 0.21 

One arm works, 10 more (50, 50, 

50, 60) 

0.7909 0.7909 3.29 0.36 0.10 0.10 0.44 

One arm works, 5 more (50, 50, 50, 

55) 

0.0677 0.0677 NA 0.37 0.13 0.13 0.37 

Better best (50, 55, 60, 65) 0.8069 0.8069 3.86 0.36 0.10 0.18 0.37 

One worse, others work (50, 45, 55, 

60) 

0.6856 0.6856 3.43 0.36 0.07 0.17 0.40 

All work, two similar (50, 55, 60, 

60) 

0.2744 0.2744 3.54 0.37 0.10 0.26 0.27 

        

Design 6 RAR every 50 patients, no control arm 

Null (50, 50, 50, 50) 0.0117 0.0117 NA 0.25 0.25 0.25 0.25 
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One arm works, 10 more (50, 50, 

50, 60) 

0.9972 0.9972 2.34 0.13 0.13 0.13 0.61 

One arm works, 5 more (50, 50, 50, 

55) 

0.5654 0.5654 NA 0.15 0.15 0.15 0.54 

Better best (50, 55, 60, 65) 0.8982 0.8982 1.95 0.07 0.10 0.22 0.61 

One worse, others work (50, 45, 55, 

60) 

0.8972 0.8972 1.95 0.10 0.07 0.22 0.61 

All work, two similar (50, 55, 60, 

60) 

0.5493 0.5493 2.93 0.06 0.12 0.41 0.41 

aEach row represents a different scenario for each design where the assumed FAOS QoL score is given in brackets as tubular bandage, boot, brace and below-knee cast score 
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Table 4. Summary of re-executions of CAST study using each Bayesian design 

 Design 1 Design 2 Design 3 Design 4 Design 5 Design 6 

Proportion stopping for 

efficacy at 200 patients 

 

NA 0.216 0.148 0.166 0.147 0.072 

Proportion stopping for 

efficacy at 400 patients 

 

NA 0.043 0.011 0.017 0.011 0.004 

Proportion stopping for futility 

at 200 patients 

 

NA 0 0 0 0 0 

Proportion stopping for futility 

at 400 patients 

 

NA 0 0 0 0 0 

Proportion re-executions 

declared successful at final 

analysis 

 

0.855 0.894 0.835 0.865 0.877 0.23 

Proportion re-executions 

tubular bandage (control) 

declared best at final analysis 

 

0 0 0.001 0 0 0 

Proportion re-executions boot 

declared best at final analysis 

 

0.054 0.057 0.085 0.036 0.021 0.007 

Proportion re-executions brace 

declared best at final analysis 

 

0.437 0.402 0.43 0.451 0.481 0.432 

Proportion re-executions 

below-knee cast declared best 

at final analysis 

 

0.509 0.541 0.484 0.513 0.498 0.561 
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Median (IQR) of the posterior 

mean estimates for tubular 

bandage 

 

54.25 (52.70, 

55.68) 

 

53.72 (51.90, 

55.46) 

 

54.40 (52.99, 

55.74) 

 

53.91 (52.52, 

55.30) 

 

53.97 

(52.64, 

55.33) 

52.49 (51.68, 

52.96) 

 

Median (IQR)  of the posterior 

estimates of the difference in 

means between boot and 

tubular bandage 

 

5.60 (3.65, 

7.48) 

 

6.00 (4.02, 

8.25) 

 

5.65 (3.75, 

7.56) 

 

4.77 (2.42, 

6.84) 

 

4.85 (2.58, 

7.05) 

6.42 (3.98, 

8.15) 

 

Median (IQR)  of the posterior 

estimates of the difference in 

means between brace and 

tubular bandage 

 

8.60 (6,52, 

10.63) 

 

8.66 (6.67, 

10.89) 

 

7.62 (4.81, 

10.22) 

 

8.48 (5.65, 

10.71) 

 

8.67 (5.99, 

10.73) 

9.64 (6.01, 

11.66) 

 

Median (IQR)  of the posterior 

estimates of the difference in 

means between below knee 

cast and tubular bandage 

8.70 (6.86, 

10.91) 

 

9.69 (7.22, 

13.29) 

 

8.06 (5.44, 

10.53) 

 

8.79 (6.57, 

11.39),  

8.68 (6.58, 

11.27) 

10.57 (8.69, 

11.78)  

  

 


