16 research outputs found

    Upper density problems in infinite Ramsey theory

    Get PDF
    We consider the following question in infinite Ramsey theory, introduced by ErdƑs and Galvin [EG93] in a particular case and by DeBiasio and McKenney [DM19] in a more general setting. Let H be a countably infinite graph. If the edges of the complete graph on the natural numbers are colored red or blue, what is the maximum value of λ such that we are guaranteed to find a monochromatic copy of H whose vertex set has upper density at least λ? We call this value the Ramsey density of H. The problem of determining the Ramsey density of the infinite path was first studied by ErdƑs and Galvin, and was recently solved by Corsten, DeBiasio, Lang and the author [CDLL19]. In this thesis we study the problem of determining the Ramsey density of arbitrary graphs H. On an intuitive level, we show that three properties of a graph H have an effect on the Ramsey density: the chromatic number, the number of components, and the expansion of its independent sets. We deduce the exact value of the Ramsey density for a wide variety of graphs, including all locally finite forests, bipartite factors, clique factors and odd cycle factors. We also determine the value of the Ramsey density of all locally finite graphs, up to a factor of 2. We also study a list coloring variant of the same problem. We show that there exists a way of assigning a list of size two to every edge in the complete graph on N such that, in every list coloring, there are monochromatic paths with density arbitrarily close to 1.Wir betrachten die folgende Fragestellung aus der Ramsey-Theorie, welche von ErdƑs und Galvin [EG93] in einem Spezialfall sowie von DeBiasio und McKenney [DM19] in einem allgemeineren Kontext formuliert wurde: Es sei H ein abzĂ€hlbar unendlicher Graph. Welches ist der grĂ¶ĂŸtmögliche Wert λ, sodass wir, wenn die Kanten des vollstĂ€ndigen Graphen mit Knotenmenge N jeweils entweder rot oder blau gefĂ€rbt sind, stets eine einfarbige Kopie von H, dessen Knotenmenge eine obere asymptotische Dichte von mindestens λ besitzt, finden können? Wir nennen diesen Wert die Ramsey-Dichte von H. Das Problem, die Ramsey-Dichte des unendlichen Pfades zu bestimmen wurde erstmals von ErdƑs und Galvin untersucht und wurde vor kurzem von Corsten, DeBiasio, Lang und dem Autor [CDLL19] gelöst. Gegenstand der vorliegenden Dissertation ist die Bestimmung der Ramsey-Dichten von Graphen. Auf einer intuitiven Ebene zeigen wir, dass drei Parameter eines Graphen die Ramsey-Dichte beeinflussen: die chromatische Zahl, die Anzahl der Zusammenhangskomponenten sowie die Expansion seiner unabhĂ€ngigen Mengen. Wir ermitteln die exakten Werte der Ramsey-Dichte fĂŒr eine Vielzahl von Graphen, darunter alle lokal endlichen WĂ€lder, bipartite Faktoren, Kr-Faktoren sowie Ck-Faktoren fĂŒr ungerade k. Ferner bestimmen wir den Wert der Ramsey-Dichte aller lokal endlichen Graphen bis auf einen Faktor 2. DarĂŒber hinaus untersuchen wir eine Variante des oben beschriebenen Problems fĂŒr ListenfĂ€rbungen. Wir zeigen, dass es möglich ist, jeder Kante des vollstĂ€ndigen Graphen mit Knotenmenge N eine Liste der GrĂ¶ĂŸe Zwei zuzuweisen, sodass in jeder zugehörigen ListenfĂ€rbung monochromatische Pfade mit beliebig nah an 1 liegender Dichte existieren

    Planar graph with twin-width seven

    Full text link
    We construct a planar graph with twin-width equal to seven

    A Note on the Minimum Number of Edges in Hypergraphs with Property O

    Full text link
    An oriented kk-uniform hypergraph is said to have Property O if for every linear order of the vertex set, there is some edge oriented consistently with the linear order. Recently Duffus, Kay and R\"{o}dl investigated the minimum number f(k)f(k) of edges in a kk-uniform hypergaph with Property O. They proved that k!≀f(k)≀(k2ln⁥k)k!k! \leq f(k) \leq (k^2 \ln k) k!, where the upper bound holds for kk sufficiently large. In this short note we improve their upper bound by a factor of kln⁥kk \ln k, showing that f(k)≀(⌊k2⌋+1)k!−⌊k2⌋(k−1)!f(k) \le \left(\lfloor \frac{k}{2} \rfloor +1 \right) k! - \lfloor \frac{k}{2} \rfloor (k-1)! for every k≄3k\geq 3. We also show that their lower bound is not tight. Furthermore, Duffus, Kay and R\"{o}dl also studied the minimum number n(k)n(k) of vertices in a kk-uniform hypergaph with Property O. For k=3k=3 they showed n(3)∈{6,7,8,9}n(3) \in \{6,7,8,9\}, and asked for the precise value of n(3)n(3). Here we show n(3)=6n(3)=6.Comment: 6 pages, 1 figur

    Removal lemmas in sparse graphs

    Get PDF
    In this work we explain and prove the graph removal lemma, both in its dense and sparse cases, and show how these can be applied to finite groups to obtain arithmetic removal lemmas. We show how the concept of regularity plays a crucial role in the proof of the removal lemma. We explain the motivation behind the sparse case, and the importance of pseudorandom graphs in sparse versions of the removal lemma. Finally, we show how the removal lemma, both in its graph and arithmetic versions, can be used to prove Roth's theorem, that is, the existence of 3-term arithmetic progressions in any dense subset of the natural numbers

    The dimension of the region of feasible tournament profiles

    Full text link
    Erd\H os, Lov\'asz and Spencer showed in the late 1970s that the dimension of the region of kk-vertex graph profiles, i.e., the region of feasible densities of kk-vertex graphs in large graphs, is equal to the number of non-trivial connected graphs with at most kk vertices. We determine the dimension of the region of kk-vertex tournament profiles. Our result, which explores an interesting connection to Lyndon words, yields that the dimension is much larger than just the number of strongly connected tournaments, which would be the answer expected as the analogy to the setting of graphs

    Upper density of monochromatic infinite paths

    Get PDF
    We prove that in every 2-colouring of the edges of KN there exists a monochromatic infinite path P such that V(P) has upper density at least (12+ √ 8)/17 ≈ 0.87226 and further show that this is best possible. This settles a problem of Erdos and Galvi
    corecore