239 research outputs found
Metal-insulator transition in disordered 2DEG including temperature effects
We calculate self-consistently the mutual dependence of electron correlations
and electron-defect scattering for a two dimensional electron gas at finite
temperature. We employ an STLS approach to calculate the electron correlations
while the electron scattering rate off Coulombic impurities and surface
roughness is calculated using self-consistent current-relaxation theory. The
methods are combined and self-consistently solved. We discuss a metal-insulator
transition for a range of disorder levels and electron densities. Our results
are in good agreement with recent experimental observations.Comment: 4 pages, RevTeX + epsf, 5 figure
Vertical Confinement and Evolution of Reentrant Insulating Transition in the Fractional Quantum Hall Regime
We have observed an anomalous shift of the high field reentrant insulating
phases in a two-dimensional electron system (2DES) tightly confined within a
narrow GaAs/AlGaAs quantum well. Instead of the well-known transitions into the
high field insulating states centered around , the 2DES confined
within an 80\AA-wide quantum well exhibits the transition at .
Comparably large quantum lifetime of the 2DES in narrow well discounts the
effect of disorder and points to confinement as the primary driving force
behind the evolution of the reentrant transition.Comment: 5 pages, 4 figure
Low-field magnetoresistance in GaAs 2D holes
We report low-field magnetotransport data in two-dimensional hole systems in
GaAs/AlGaAs heterostructures and quantum wells, in a large density range, cm, with primary focus on
samples grown on (311)A GaAs substrates. At high densities, cm, we observe a remarkably strong positive magnetoresistance.
It appears in samples with an anisotropic in-plane mobility and predominantly
along the low-mobility direction, and is strongly dependent on the
perpendicular electric field and the resulting spin-orbit interaction induced
spin-subband population difference. A careful examination of the data reveals
that the magnetoresistance must result from a combination of factors including
the presence of two spin-subbands, a corrugated quantum well interface which
leads to the mobility anisotropy, and possibly weak anti-localization. None of
these factors can alone account for the observed positive magnetoresistance. We
also present the evolution of the data with density: the magnitude of the
positive magnetoresistance decreases with decreasing density until, at the
lowest density studied ( cm), it vanishes and is
replaced by a weak negative magnetoresistance.Comment: 8 pages, 8 figure
Schwinger-Keldysh Approach to Disordered and Interacting Electron Systems: Derivation of Finkelstein's Renormalization Group Equations
We develop a dynamical approach based on the Schwinger-Keldysh formalism to
derive a field-theoretic description of disordered and interacting electron
systems. We calculate within this formalism the perturbative RG equations for
interacting electrons expanded around a diffusive Fermi liquid fixed point, as
obtained originally by Finkelstein using replicas. The major simplifying
feature of this approach, as compared to Finkelstein's is that instead of replicas, we only need to consider N=2 species. We compare the dynamical
Schwinger-Keldysh approach and the replica methods, and we present a simple and
pedagogical RG procedure to obtain Finkelstein's RG equations.Comment: 22 pages, 14 figure
Dual Vortex Theory of Strongly Interacting Electrons: Non-Fermi Liquid to the (Hard) Core
As discovered in the quantum Hall effect, a very effective way for
strongly-repulsive electrons to minimize their potential energy is to aquire
non-zero relative angular momentum. We pursue this mechanism for interacting
two-dimensional electrons in zero magnetic field, by employing a representation
of the electrons as composite bosons interacting with a Chern-Simons gauge
field. This enables us to construct a dual description in which the fundamental
constituents are vortices in the auxiliary boson fields. The resulting
formalism embraces a cornucopia of possible phases. Remarkably,
superconductivity is a generic feature, while the Fermi liquid is not --
prompting us to conjecture that such a state may not be possible when the
interactions are sufficiently strong. Many aspects of our earlier discussions
of the nodal liquid and spin-charge separation find surprising incarnations in
this new framework.Comment: Modified dicussion of the hard-core model, correcting several
mistake
Two-species percolation and Scaling theory of the metal-insulator transition in two dimensions
Recently, a simple non-interacting-electron model, combining local quantum
tunneling via quantum point contacts and global classical percolation, has been
introduced in order to describe the observed ``metal-insulator transition'' in
two dimensions [1]. Here, based upon that model, a two-species-percolation
scaling theory is introduced and compared to the experimental data. The two
species in this model are, on one hand, the ``metallic'' point contacts, whose
critical energy lies below the Fermi energy, and on the other hand, the
insulating quantum point contacts. It is shown that many features of the
experiments, such as the exponential dependence of the resistance on
temperature on the metallic side, the linear dependence of the exponent on
density, the scale of the critical resistance, the quenching of the
metallic phase by a parallel magnetic field and the non-monotonic dependence of
the critical density on a perpendicular magnetic field, can be naturally
explained by the model.
Moreover, details such as the nonmonotonic dependence of the resistance on
temperature or the inflection point of the resistance vs. parallel magnetic are
also a natural consequence of the theory. The calculated parallel field
dependence of the critical density agrees excellently with experiments, and is
used to deduce an experimental value of the confining energy in the vertical
direction. It is also shown that the resistance on the ``metallic'' side can
decrease with decreasing temperature by an arbitrary factor in the degenerate
regime ().Comment: 8 pages, 8 figure
News from the Muon (g-2) Experiment at BNL
The magnetic moment anomaly a_mu = (g_mu - 2) / 2 of the positive muon has
been measured at the Brookhaven Alternating Gradient Synchrotron with an
uncertainty of 0.7 ppm. The new result, based on data taken in 2000, agrees
well with previous measurements. Standard Model evaluations currently differ
from the experimental result by 1.6 to 3.0 standard deviations.Comment: Talk presented at RADCOR - Loops and Legs 2002, Kloster Banz,
Germany, September 8-13 2002, to be published in Nuclear Physics B (Proc.
Suppl.); 5 pages, 3 figure
Service-oriented Distributed Applications in the Future Internet: The Case for Interaction Paradigm Interoperability
International audienceThe essential issue of interoperability in distributed systems is becoming even more pressing in the Future Internet, where complex applications will be composed from extremely heterogeneous systems. Open system integration paradigms, such as service oriented architecture (SOA) and enterprise service bus (ESB), have provided answers to the interoperability requirement. However, when it comes to integrating systems featuring heterogeneous interaction paradigms, such as client-service, publish-subscribe and tuple space, existing solutions are typically ad hoc and partial, applying to specific interaction protocol technologies. In this paper, we introduce an interoperability solution based on abstraction and merging of the common high-level semantics of interaction paradigms, which is sufficiently general and extensible to accommodate many different protocol technologies. We apply this solution to revisit the SOA- and ESB-based integration of heterogeneous distributed systems
Human Resource Flexibility as a Mediating Variable Between High Performance Work Systems and Performance
Much of the human resource management literature has demonstrated the impact of high performance
work systems (HPWS) on organizational performance. A new generation of studies is
emerging in this literature that recommends the inclusion of mediating variables between HPWS
and organizational performance. The increasing rate of dynamism in competitive environments
suggests that measures of employee adaptability should be included as a mechanism that may
explain the relevance of HPWS to firm competitiveness. On a sample of 226 Spanish firms, the
study’s results confirm that HPWS influences performance through its impact on the firm’s
human resource (HR) flexibility
The genetic architecture of the human cerebral cortex
INTRODUCTION
The cerebral cortex underlies our complex cognitive capabilities. Variations in human cortical surface area and thickness are associated with neurological, psychological, and behavioral traits and can be measured in vivo by magnetic resonance imaging (MRI). Studies in model organisms have identified genes that influence cortical structure, but little is known about common genetic variants that affect human cortical structure.
RATIONALE
To identify genetic variants associated with human cortical structure at both global and regional levels, we conducted a genome-wide association meta-analysis of brain MRI data from 51,665 individuals across 60 cohorts. We analyzed the surface area and average thickness of the whole cortex and 34 cortical regions with known functional specializations.
RESULTS
We identified 306 nominally genome-wide significant loci (P < 5 × 10−8) associated with cortical structure in a discovery sample of 33,992 participants of European ancestry. Of the 299 loci for which replication data were available, 241 loci influencing surface area and 14 influencing thickness remained significant after replication, with 199 loci passing multiple testing correction (P < 8.3 × 10−10; 187 influencing surface area and 12 influencing thickness).
Common genetic variants explained 34% (SE = 3%) of the variation in total surface area and 26% (SE = 2%) in average thickness; surface area and thickness showed a negative genetic correlation (rG = −0.32, SE = 0.05, P = 6.5 × 10−12), which suggests that genetic influences have opposing effects on surface area and thickness. Bioinformatic analyses showed that total surface area is influenced by genetic variants that alter gene regulatory activity in neural progenitor cells during fetal development. By contrast, average thickness is influenced by active regulatory elements in adult brain samples, which may reflect processes that occur after mid-fetal development, such as myelination, branching, or pruning. When considered together, these results support the radial unit hypothesis that different developmental mechanisms promote surface area expansion and increases in thickness.
To identify specific genetic influences on individual cortical regions, we controlled for global measures (total surface area or average thickness) in the regional analyses. After multiple testing correction, we identified 175 loci that influence regional surface area and 10 that influence regional thickness. Loci that affect regional surface area cluster near genes involved in the Wnt signaling pathway, which is known to influence areal identity.
We observed significant positive genetic correlations and evidence of bidirectional causation of total surface area with both general cognitive functioning and educational attainment. We found additional positive genetic correlations between total surface area and Parkinson’s disease but did not find evidence of causation. Negative genetic correlations were evident between total surface area and insomnia, attention deficit hyperactivity disorder, depressive symptoms, major depressive disorder, and neuroticism.
CONCLUSION
This large-scale collaborative work enhances our understanding of the genetic architecture of the human cerebral cortex and its regional patterning. The highly polygenic architecture of the cortex suggests that distinct genes are involved in the development of specific cortical areas. Moreover, we find evidence that brain structure is a key phenotype along the causal pathway that leads from genetic variation to differences in general cognitive function
- …