35 research outputs found

    {\AA}ngstr\"om-resolved Interfacial Structure in Organic-Inorganic Junctions

    Get PDF
    Charge transport processes at interfaces which are governed by complex interfacial electronic structure play a crucial role in catalytic reactions, energy storage, photovoltaics, and many biological processes. Here, the first soft X-ray second harmonic generation (SXR-SHG) interfacial spectrum of a buried interface (boron/Parylene-N) is reported. SXR-SHG shows distinct spectral features that are not observed in X-ray absorption spectra, demonstrating its extraordinary interfacial sensitivity. Comparison to electronic structure calculations indicates a boron-organic separation distance of 1.9 {\AA}, wherein changes as small as 0.1 {\AA} result in easily detectable SXR-SHG spectral shifts (ca. 100s of meV). As SXR-SHG is inherently ultrafast and sensitive to individual atomic layers, it creates the possibility to study a variety of interfacial processes, e.g. catalysis, with ultrafast time resolution and bond specificity.Comment: 19 page

    Thermally driven electrokinetic energy conversion with liquid water microjets

    Full text link
    A goal of current energy research is to design systems and devices that can efficiently exploit waste heat and utilize solar or geothermal heat energy for electrical power generation. We demonstrate a novel technique exploiting water's large coefficient of thermal expansion, wherein modest thermal gradients produce the requisite high pressure for driving fast-flowing liquid water microjets, which can effect the direct conversion of the kinetic energy into electricity and gaseous hydrogen. Waste heat in thermoelectric generating plants and combustion engines, as well as solar and geothermal energy could be used to drive these systems

    The hydration structure of dissolved carbon dioxide from X-ray absorption spectroscopy

    Full text link
    Abstract The dissolution of carbon dioxide in water and its subsequent hydrolysis reactions comprise one of the most central processes in all of science, yet it remains incompletely understood despite enormous effort. We report the detailed characterization of dissolved CO2 gas through the combination of X-ray spectroscopy and first principles theory. The molecule acts as a hydrophobe in water with an average hydrogen bond number of 0.56. The carbon atom interacts weakly with a single water at a distance of >2.67 Å and the carbonyl oxygens serve as weak hydrogen bond acceptors, thus locally enhancing the tetrahedral water hydrogen bonding structure

    Communication: Hydrogen bonding interactions in water-alcohol mixtures from X-ray absorption spectroscopy.

    No full text
    While methanol and ethanol are macroscopically miscible with water, their mixtures exhibit negative excess entropies of mixing. Despite considerable effort in both experiment and theory, there remains significant disagreement regarding the origin of this effect. Different models for the liquid mixture structure have been proposed to address this behavior, including the enhancement of the water hydrogen bonding network around the alcohol hydrophobic groups and microscopic immiscibility or clustering. We have investigated mixtures of methanol, ethanol, and isopropanol with water by liquid microjet X-ray absorption spectroscopy on the oxygen K-edge, an atom-specific probe providing details of both inter- and intra-molecular structure. The measured spectra evidence a significant enhancement of hydrogen bonding originating from the methanol and ethanol hydroxyl groups upon the addition of water. These additional hydrogen bonding interactions would strengthen the liquid-liquid interactions, resulting in additional ordering in the liquid structures and leading to a reduction in entropy and a negative enthalpy of mixing, consistent with existing thermodynamic data. In contrast, the spectra of the isopropanol-water mixtures exhibit an increase in the number of broken alcohol hydrogen bonds for mixtures containing up to 0.5 water mole fraction, an observation consistent with existing enthalpy of mixing data, suggesting that the measured negative excess entropy is a result of clustering or micro-immiscibility

    Synthesis and Evaluation of Molybdenum and Tungsten Monoaryloxide Halide Alkylidene Complexes for Z-Selective Cross-Metathesis of Cyclooctene and Z-1,2-Dichloroethylene

    No full text
    Molybdenum complexes with the general formula Mo(NR)(CHR′)(OR″)(Cl)(MeCN) (R = t-Bu or 1-adamantyl; OR″ = a 2,6-terphenoxide) recently have been found to be highly active catalysts for cross-metathesis reactions between Z-internal olefins and Z-1,2-dichloroethylene or Z-(CF₃)CH═CH(CF₃). In this paper we report methods of synthesizing new potential catalysts with the general formula M(NR)(CHR′)(OR″)(Cl)(L) in which M = Mo or W, NR = N-2,6-diisopropylphenyl or NC6F5, and L is a phosphine, a pyridine, or a nitrile. We also test and compare all catalysts in the cross-metathesis of Z-1,2-dichloroethylene and cyclooctene. Our investigations indicate that tungsten complexes are inactive in the test reaction either because the donor is bound too strongly or because acetonitrile inserts into a W═C bond. The acetonitrile or pivalonitrile Mo(NR)(CHR′)(OR″)(Cl)(L) complexes are found to be especially reactive because the 14e Mo(NR)(CHR′)(OR″)Cl core is accessible through dissociation of the nitrile to a significant extent. Pivalonitrile can be removed (>95%) from Mo(NAr)(CHCMe₂Ph)(OHMT)(Cl)(t-BuCN) (Ar = 2,6-diisopropylphenyl; OHMT = 2,6-dimesitylphenoxide) to give 14e Mo(NAr)(CHCMe₂Ph)(OHMT)Cl in solution as a mixture of syn and anti (60:40 at 0.015 M) nitrile-free isomers, but these 14e complexes have not yet been isolated in pure form. The syn isomer of Mo(NAr)(CHCMe₂Ph)(OHMT)Cl binds pivalonitrile most strongly. Other Mo(NR)(CHR′)(OR″)(Cl)(L) complexes can be activated through addition of B(C₆F₅)₃. High stereoselectivities (>98% Z,Z) of ClCH═CH(CH₂)₆CH═CHCl are not restricted to tert-butylimido or adamantylimido complexes; 96.2% Z selectivity is observed with boron-activated Mo(NC₆F₅)(CHR′)(OHIPT)(Cl)(PPhMe₂). So far no Mo═CHCl complexes, which are required intermediates in the test reaction, have been observed in NMR studies at room temperature.National Institutes of Health (U.S.) (Award GM-59426)National Science Foundation (U.S.) (Grant CHE-1463707)National Science Foundation (U.S.) (Grant CHE-0946721
    corecore