15 research outputs found

    Membrane Localization of the Repeats-in-Toxin (RTX) Leukotoxin (LtxA) Produced by Aggregatibacter Actinomycetemcomitans

    Get PDF
    The oral bacterium, Aggregatibacter actinomycetemcomitans, which is associated with localized aggressive periodontitis, as well as systemic infections including endocarditis, produces numerous virulence factors, including a repeats-in-toxin (RTX) protein called leukotoxin (LtxA), which kills human immune cells. The strains of A. actinomycetemcomitans most closely associated with disease have been shown to produce the most LtxA, suggesting that LtxA plays a significant role in the virulence of this organism. LtxA, like many of the RTX toxins, can be divided into four functional domains: an N-terminal hydrophobic domain, which contains a significant fraction of hydrophobic residues and has been proposed to play a role in the membrane interaction of the toxin; the central domain, which contains two lysine residues that are the sites of post-translational acylation; the repeat domain that is characteristic of the RTX toxins, and a C-terminal domain thought to be involved in secretion. In its initial interaction with the host cell, LtxA must bind to both cholesterol and an integrin receptor, lymphocyte function-associated antigen-1 (LFA-1). While both interactions are essential for toxicity, the domains of LtxA involved remain unknown. We therefore undertook a series of experiments, including tryptophan quenching and trypsin digestion, to characterize the structure of LtxA upon interaction with membranes of various lipid compositions. Our results demonstrate that LtxA adopts a U-shaped conformation in the membrane, with the N- and C-terminal domains residing outside of the membrane. © 2018 Brown et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    Actinobacillus Actinomycetemcomitans Leukotoxin Requires Lipid Microdomains for Target Cell Cytotoxicity

    Get PDF
    Actinobacillus actinomycetemcomitans produces a leukotoxin (Ltx) that kills leukocyte function-associated antigen-1 (LFA-1)-bearing cells from man, the Great Apes and Old World monkeys. The unique specificity of Ltx for the β2 integrin, LFA-1, suggests it is capable of providing insight into the pathogenic mechanisms of Ltx and other RTX toxins. Using the Jurkat T cell line and an LFA-1-deficient Jurkat mutant (Jβ2.7) as models, we found the initial effect of Ltx is to elevate cytosolic Ca2+ [Ca2+]c, an event that is independent of the Ltx/LFA-1 interaction. [Ca2+]c increases initiate a series of events that involve the activation of calpain, talin cleavage, mobilization to, and subsequent clustering of, LFA-1 in cholesterol and sphingolipid-rich regions of the plasma membrane known as lipid rafts. The association of Ltx and LFA-1 within lipid rafts is essential for cell lysis. Jβ2.7 cells fail to accumulate Ltx in their raft fractions and are not killed, while cholesterol depletion experiments demonstrate the necessity of raft integrity for Ltx function. We propose that toxin-induced Ca2+ fluxes mobilize LFA-1 to lipid rafts where it associates with Ltx. These findings suggest that Ltx utilizes the raft to stimulate an integrin signalling pathway that leads to apoptosis of target cells

    Actinobacillus Actinomycetemcomitans Leukotoxin Requires Lipid Microdomains for Target Cell Cytotoxicity

    Get PDF
    Actinobacillus actinomycetemcomitans produces a leukotoxin (Ltx) that kills leukocyte function-associated antigen-1 (LFA-1)-bearing cells from man, the Great Apes and Old World monkeys. The unique specificity of Ltx for the β2 integrin, LFA-1, suggests it is capable of providing insight into the pathogenic mechanisms of Ltx and other RTX toxins. Using the Jurkat T cell line and an LFA-1-deficient Jurkat mutant (Jβ2.7) as models, we found the initial effect of Ltx is to elevate cytosolic Ca2+ [Ca2+]c, an event that is independent of the Ltx/LFA-1 interaction. [Ca2+ ]c increases initiate a series of events that involve the activation of calpain, talin cleavage, mobilization to, and subsequent clustering of, LFA-1 in cholesterol and sphingolipid-rich regions of the plasma membrane known as lipid rafts. The association of Ltx and LFA-1 within lipid rafts is essential for cell lysis. Jβ2.7 cells fail to accumulate Ltx in their raft fractions and are not killed, while cholesterol depletion experiments demonstrate the necessity of raft integrity for Ltx function. We propose that toxin-induced Ca2+ fluxes mobilize LFA-1 to lipid rafts where it associates with Ltx. These findings suggest that Ltx utilizes the raft to stimulate an integrin signalling pathway that leads to apoptosis of target cells. © 2006 The Authors; Journal compilation © 2006 Blackwell Publishing Ltd

    Change & Maintaining Change in School Cafeterias: Economic and Behavioral-Economic Approaches to Increasing Fruit and Vegetable Consumption

    Get PDF
    Developing a daily habit of consuming fruits and vegetables (FV) in children is an important public-health goal. Eating habits acquired in childhood are predictive of adolescent and adult dietary patterns. Thus, healthy eating patterns developed early in life can protect the individual against a number of costly health deficits and may reduce the prevalence of obesity. At present, children in the United States (US) under-consume FV despite having access to them through the National School Lunch Program. Because access is an obstacle to developing healthy eating habits, particularly in low-income households, targeting children’s FV consumption in schools has the advantage of near-universal FV availability among more than 30 million US children. This chapter reviews economic and behavioral-economic approaches to increasing FV consumption in schools. Inclusion criteria include objective measurement of FV consumption (e.g., plate waste measures) and minimal demand characteristics. Simple but effective interventions include (a) increasing the variety of vegetables served, (b) serving sliced instead of whole fruits, (c) scheduling lunch after recess, and (d) giving children at least 25 minutes to eat. Improving the taste of FV and short-term incentivizing consumption of gradually increasing amounts can produce large increases in consumption of these foods. Low-cost game-based incentive program may increase the practicality of the latter strategy

    Aggregatibacter actinomycetemcomitans Leukotoxin Is Delivered to Host Cells in an LFA-1-Indepdendent Manner When Associated with Outer Membrane Vesicles

    No full text
    The Gram-negative bacterium, Aggregatibacter actinomycetemcomitans, has been associated with localized aggressive periodontitis (LAP). In particular, highly leukotoxic strains of A. actinomycetemcomitans have been more closely associated with this disease, suggesting that LtxA is a key virulence factor for A. actinomycetemcomitans. LtxA is secreted across both the inner and outer membranes via the Type I secretion system, but has also been found to be enriched within outer membrane vesicles (OMVs), derived from the bacterial outer membrane. We have characterized the association of LtxA with OMVs produced by the highly leukotoxic strain, JP2, and investigated the interaction of these OMVs with host cells to understand how LtxA is delivered to host cells in this OMV-associated form. Our results demonstrated that a significant fraction of the secreted LtxA exists in an OMV-associated form. Furthermore, we have discovered that in this OMV-associated form, the toxin is trafficked to host cells by a cholesterol- and receptor-independent mechanism in contrast to the mechanism by which free LtxA is delivered. Because OMV-associated toxin is trafficked to host cells in an entirely different manner than free toxin, this study highlights the importance of studying both free and OMV-associated forms of LtxA to understand A. actinomycetemcomitans virulence

    Membrane localization of the Repeats-in-Toxin (RTX) Leukotoxin (LtxA) produced by Aggregatibacter actinomycetemcomitans.

    Get PDF
    The oral bacterium, Aggregatibacter actinomycetemcomitans, which is associated with localized aggressive periodontitis, as well as systemic infections including endocarditis, produces numerous virulence factors, including a repeats-in-toxin (RTX) protein called leukotoxin (LtxA), which kills human immune cells. The strains of A. actinomycetemcomitans most closely associated with disease have been shown to produce the most LtxA, suggesting that LtxA plays a significant role in the virulence of this organism. LtxA, like many of the RTX toxins, can be divided into four functional domains: an N-terminal hydrophobic domain, which contains a significant fraction of hydrophobic residues and has been proposed to play a role in the membrane interaction of the toxin; the central domain, which contains two lysine residues that are the sites of post-translational acylation; the repeat domain that is characteristic of the RTX toxins, and a C-terminal domain thought to be involved in secretion. In its initial interaction with the host cell, LtxA must bind to both cholesterol and an integrin receptor, lymphocyte function-associated antigen-1 (LFA-1). While both interactions are essential for toxicity, the domains of LtxA involved remain unknown. We therefore undertook a series of experiments, including tryptophan quenching and trypsin digestion, to characterize the structure of LtxA upon interaction with membranes of various lipid compositions. Our results demonstrate that LtxA adopts a U-shaped conformation in the membrane, with the N- and C-terminal domains residing outside of the membrane

    AMPK deficiency in cardiac muscle results in dilated cardiomyopathy in the absence of changes in energy metabolism.

    No full text
    AIMS: AMP-activated protein kinase (AMPK) is thought to be a central player in regulating myocardial metabolism and its activation has been shown to inhibit cardiac hypertrophy. Recently, mice with muscle-specific deletion of AMPK β1/β2 subunits (AMPKβ1β2-deficient mice, β1β2M-KO) have been generated and possess <10% of normal AMPK activity in muscle. However, how/if dramatic AMPK deficiency alters cardiac metabolism, function, or morphology has not been investigated. Therefore, the aim of this study was to determine whether a significant loss of AMPK activity alters cardiac function, metabolism, and hypertrophy, and whether this may play a role in the pathogenesis of heart failure. METHODS AND RESULTS: β1β2M-KO mice exhibit an approximate 25% reduction in systolic and diastolic function compared with wild-type (WT) littermates. Despite the well-documented role of AMPK in controlling myocardial energy metabolism, there was no difference in basal glucose and fatty acid oxidation rates between β1β2M-KO and WT mice. However, there was reduced AMPK-mediated phosphorylation of troponin I in β1β2M-KO and reduced ventricular cell shortening in the presence of low Ca(2+), which may explain the impaired cardiac function in these mice. Interestingly, β1β2M-KO mice did not display any signs of compensatory cardiac hypertrophy, which could be attributed to impaired activation of p38 MAPK. CONCLUSIONS: β1β2M-KO mice display evidence of dilated cardiomyopathy. This is the first mouse model of AMPK deficiency that demonstrates cardiac dysfunction in the absence of pathological stress and provides insights into the role of AMPK in regulating myocardial function, metabolism, hypertrophy, and the progression to heart failure
    corecore