7 research outputs found

    Development and validation of analytical methods for the simultaneous estimation of Nimorazole and Ofloxacin in tablet dosage form

    Get PDF
    Two simple, rapid, accurate and precise spectrophotometric methods have been developed for simultaneous estimation of Nimorazole and Ofloxacin from tablet dosage form. Method І involves formation of ‘simultaneous equations’ at 304 nm (λ max of Nimorazole) and 287.5 nm (λ max of Ofloxacin); while Method ІІ involves, formation of ‘Absorbance ratio equation’ at 301(isoabsorptive point) and 287.5 nm (λ max of Ofloxacin) using distilled water as a solvent. The linearity was observed in the concentration range of 5 - 25 μg/ml for Nimorazole and 2 - 10 μg/ml for Ofloxacin. The results of analysis have been validated statistically and by recovery studies and were found satisfactory

    Submillimetre Transient Science in the Next Decade

    Get PDF
    White paper from the EAO Submillimetre Futures Meeting, 20-23 May 2019, Nanjing, ChinaThis white paper gives a brief summary of the time domain science that has been performed with the JCMT in recent years and highlights the opportunities for continuing work in this field over the next decade. The main focus of this document is the JCMT Transient Survey, a large program initiated in 2015 to measure the frequency and amplitude of variability events associated with protostars in nearby star-forming regions. After summarising the major accomplishments so far, an outline is given for extensions to the current survey, featuring a discussion on what will be possible with the new 850 micron camera that is expected to be installed in late 2022. We also discuss possible applications of submillimetre monitoring to active galactic nuclei, X-ray binaries, asymptotic giant branch stars, and flare stars.Science and Technology Facilities Counci

    The JCMT Transient Survey: Four-year Summary of Monitoring the Submillimeter Variability of Protostars

    Get PDF
    We present the four-year survey results of monthly submillimeter monitoring of eight nearby (<500 pc) star-forming regions by the JCMT Transient Survey. We apply the Lomb–Scargle Periodogram technique to search for and characterize variability on 295 submillimeter peaks brighter than 0.14 Jy beam−1, including 22 disk sources (Class II), 83 protostars (Class 0/I), and 190 starless sources. We uncover 18 secular variables, all of them protostars. No single-epoch burst or drop events and no inherently stochastic sources are observed. We classify the secular variables by their timescales into three groups: Periodic, Curved, and Linear. For the Curved and Periodic cases, the detectable fractional amplitude, with respect to mean peak brightness, is ∼4% for sources brighter than ∼0.5 Jy beam−1. Limiting our sample to only these bright sources, the observed variable fraction is 37% (16 out of 43). Considering source evolution, we find a similar fraction of bright variables for both Class 0 and Class I. Using an empirically motivated conversion from submillimeter variability to variation in mass accretion rate, six sources (7% of our full sample) are predicted to have years-long accretion events during which the excess mass accreted reaches more than 40% above the total quiescently accreted mass: two previously known eruptive Class I sources, V1647 Ori and EC 53 (V371 Ser), and four Class 0 sources, HOPS 356, HOPS 373, HOPS 383, and West 40. Considering the full protostellar ensemble, the importance of episodic accretion on few years timescale is negligible—only a few percent of the assembled mass. However, given that this accretion is dominated by events on the order of the observing time window, it remains uncertain as to whether the importance of episodic events will continue to rise with decades-long monitoring

    The JCMT Transient Survey: Four-year Summary of Monitoring the Submillimeter Variability of Protostars

    Get PDF
    This is the author accepted manuscript. The final version is available from IOP Publishing via the DOI in this recordWe present the four-year survey results of monthly submillimeter monitoring of eight nearby (<500 pc) star-forming regions by the JCMT Transient Survey. We apply the Lomb–Scargle Periodogram technique to search for and characterize variability on 295 submillimeter peaks brighter than 0.14 Jy beam−1, including 22 disk sources (Class II), 83 protostars (Class 0/I), and 190 starless sources. We uncover 18 secular variables, all of them protostars. No single-epoch burst or drop events and no inherently stochastic sources are observed. We classify the secular variables by their timescales into three groups: Periodic, Curved, and Linear. For the Curved and Periodic cases, the detectable fractional amplitude, with respect to mean peak brightness, is ∼4% for sources brighter than ∼0.5 Jy beam−1. Limiting our sample to only these bright sources, the observed variable fraction is 37% (16 out of 43). Considering source evolution, we find a similar fraction of bright variables for both Class 0 and Class I. Using an empirically motivated conversion from submillimeter variability to variation in mass accretion rate, six sources (7% of our full sample) are predicted to have years-long accretion events during which the excess mass accreted reaches more than 40% above the total quiescently accreted mass: two previously known eruptive Class I sources, V1647 Ori and EC 53 (V371 Ser), and four Class 0 sources, HOPS 356, HOPS 373, HOPS 383, and West 40. Considering the full protostellar ensemble, the importance of episodic accretion on few years timescale is negligible—only a few percent of the assembled mass. However, given that this accretion is dominated by events on the order of the observing time window, it remains uncertain as to whether the importance of episodic events will continue to rise with decades-long monitoring

    Stable H–C–O isotope and trace element geochemistry of the Cummins Range Carbonatite Complex, Kimberley region, Western Australia: implications for hydrothermal REE mineralization, carbonatite evolution and mantle source regions

    Get PDF
    The Neoproterozoic Cummins Range Carbonatite Complex (CRCC) is situated in the southern Halls Creek Orogen adjacent to the Kimberley Craton in northern Western Australia. The CRCC is a composite, subvertical to vertical stock ∼2 km across with a rim of phlogopite–diopside clinopyroxenite surrounding a plug of calcite carbonatite and dolomite carbonatite dykes and veins that contain variable proportions of apatite–phlogopite–magnetite ± pyrochlore ± metasomatic Na–Ca amphiboles ± zircon. Early high-Sr calcite carbonatites (4,800–6,060 ppm Sr; La/YbCN = 31.6–41.5; δ13C = −4.2 to −4.0 ‰) possibly were derived from a carbonated silicate parental magma by fractional crystallization. Associated high-Sr dolomite carbonatites (4,090–6,310 ppm Sr; La/YbCN = 96.5–352) and a late-stage, narrow, high rare earth element (REE) dolomite carbonatite dyke (La/YbCN = 2756) define a shift in the C–O stable isotope data (δ18O = 7.5 to 12.6 ‰; δ13C = −4.2 to −2.2 ‰) from the primary carbonatite field that may have been produced by Rayleigh fractionation with magma crystallization and cooling or through crustal contamination via fluid infiltration. Past exploration has focussed primarily on the secondary monazite-(Ce)-rich REE and U mineralization in the oxidized zone overlying the carbonatite. However, high-grade primary hydrothermal REE mineralization also occurs in narrow (<1 m wide) shear-zone hosted lenses of apatite–monazite-(Ce) and foliated monazite-(Ce)–talc rocks (≤∼25.8 wt% total rare earth oxide (TREO); La/YbCN = 30,085), as well as in high-REE dolomite carbonatite dykes (3.43 wt% TREO), where calcite, parisite-(Ce) and synchysite-(Ce) replace monazite-(Ce) after apatite. Primary magmatic carbonatites were widely hydrothermally dolomitized to produce low-Sr dolomite carbonatite (38.5–282 ppm Sr; La/YbCN = 38.4–158.4; δ18O = 20.8 to 21.9 ‰; δ13C = −4.3 to −3.6 ‰) that contains weak REE mineralization in replacement textures, veins and coating vugs. The relatively high δD values (−54 to −34 ‰) of H2O derived from carbonatites from the CRCC indicate that the fluids associated with carbonate formation contained a significant amount of crustal component in accordance with the elevated δ13C values (∼−4 ‰). The high δD and δ13C signature of the carbonatites may have been produced by CO2–H2O metasomatism of the mantle source during Paleoproterozoic subduction beneath the eastern margin of the Kimberley Craton
    corecore