123 research outputs found

    Risk of acute kidney injury and survival in patients treated with Metformin:an observational cohort study

    Get PDF
    Background: Whether metformin precipitates lactic acidosis in patients with chronic kidney disease (CKD) remains under debate. We examined whether metformin use was associated with an increased risk of acute kidney injury (AKI) as a proxy for lactic acidosis and whether survival among those with AKI varied by metformin exposure. Methods: All individuals with type 2 diabetes and available prescribing data between 2004 and 2013 in Tayside, Scotland were included. The electronic health record for diabetes which includes issued prescriptions was linked to laboratory biochemistry, hospital admission, death register and Scottish Renal Registry data. AKI events were defined using the Kidney Disease Improving Global Outcomes criteria with a rise in serum creatinine of at least 26.5 μmol/l or a rise of greater than 150% from baseline for all hospital admissions. Cox Regression Analyses were used to examine whether person-time periods in which current metformin exposure occurred were associated with an increased rate of first AKI compared to unexposed periods. Cox regression was also used to compare 28 day survival rates following first AKI events in those exposed to metformin versus those not exposed. Results: Twenty-five thousand one-hundred fourty-eight patients were included with a total person-time of 126,904 person years. 4944 (19.7%) people had at least one episode of AKI during the study period. There were 32.4 cases of first AKI/1000pyrs in current metformin exposed person-time periods compared to 44.9 cases/1000pyrs in unexposed periods. After adjustment for age, sex, diabetes duration, calendar time, number of diabetes drugs and baseline renal function, current metformin use was not associated with AKI incidence, HR 0.94 (95% CI 0.87, 1.02, p = 0.15). Among those with incident AKI, being on metformin at admission was associated with a higher rate of survival at 28 days (HR 0.81, 95% CI 0.69, 0.94, p = 0.006) even after adjustment for age, sex, pre-admission eGFR, HbA1c and diabetes duration. Conclusions: Contrary to common perceptions, we found no evidence that metformin increases incidence of AKI and was associated with higher 28 day survival following incident AKI

    Beyond solid-state lighting: Miniaturization, hybrid integration, and applications og GaN nano- and micro-LEDs

    Get PDF
    Gallium Nitride (GaN) light-emitting-diode (LED) technology has been the revolution in modern lighting. In the last decade, a huge global market of efficient, long-lasting and ubiquitous white light sources has developed around the inception of the Nobel-price-winning blue GaN LEDs. Today GaN optoelectronics is developing beyond lighting, leading to new and innovative devices, e.g. for micro-displays, being the core technology for future augmented reality and visualization, as well as point light sources for optical excitation in communications, imaging, and sensing. This explosion of applications is driven by two main directions: the ability to produce very small GaN LEDs (microLEDs and nanoLEDs) with high efficiency and across large areas, in combination with the possibility to merge optoelectronic-grade GaN microLEDs with silicon microelectronics in a fully hybrid approach. GaN LED technology today is even spreading into the realm of display technology, which has been occupied by organic LED (OLED) and liquid crystal display (LCD) for decades. In this review, the technological transition towards GaN micro- and nanodevices beyond lighting is discussed including an up-to-date overview on the state of the art

    Does high-dose metformin cause lactic acidosis in type 2 diabetic patients after CABG surgery? A double blind randomized clinical trial

    Get PDF
    Metformin is a dimethyl biguanide oral anti-hyperglycemic agent. Lactic acidosis due to metformin is a fatal metabolic condition that limits its use in patients in poor clinical condition, consequently reducing the number of patients who benefit from this medication. In a double blind randomized clinical trial, we investigated 200 type 2 diabetic patients after coronary artery bypass surgery in the open heart ICU of the Mazandaran Heart Center, and randomly assigned them to equal intervention and control groups. The intervention group received regular insulin infusion along with 2 metformin 500 mg tablets every twelve hours, while the control group received only intravenous insulin with 2 placebo tablets every twelve hours. Lactate level, pH, base excess, blood glucose and serum creatinine were measured over five 12 h periods, with data averaged for each period. The primary outcome in this study was high lactate levels. Comparison between the 2 groups was made by independent Student’s t-test. To compare changes in multiple measures in each group and analysis of group interaction, a repeated measurement ANOVA test was used

    Metformin:historical overview

    Get PDF
    Metformin (dimethylbiguanide) has become the preferred first-line oral blood glucose-lowering agent to manage type 2 diabetes. Its history is linked to Galega officinalis (also known as goat's rue), a traditional herbal medicine in Europe, found to be rich in guanidine, which, in 1918, was shown to lower blood glucose. Guanidine derivatives, including metformin, were synthesised and some (not metformin) were used to treat diabetes in the 1920s and 1930s but were discontinued due to toxicity and the increased availability of insulin. Metformin was rediscovered in the search for antimalarial agents in the 1940s and, during clinical tests, proved useful to treat influenza when it sometimes lowered blood glucose. This property was pursued by the French physician Jean Sterne, who first reported the use of metformin to treat diabetes in 1957. However, metformin received limited attention as it was less potent than other glucose-lowering biguanides (phenformin and buformin), which were generally discontinued in the late 1970s due to high risk of lactic acidosis. Metformin's future was precarious, its reputation tarnished by association with other biguanides despite evident differences. The ability of metformin to counter insulin resistance and address adult-onset hyperglycaemia without weight gain or increased risk of hypoglycaemia gradually gathered credence in Europe, and after intensive scrutiny metformin was introduced into the USA in 1995. Long-term cardiovascular benefits of metformin were identified by the UK Prospective Diabetes Study (UKPDS) in 1998, providing a new rationale to adopt metformin as initial therapy to manage hyperglycaemia in type 2 diabetes. Sixty years after its introduction in diabetes treatment, metformin has become the most prescribed glucose-lowering medicine worldwide with the potential for further therapeutic applications

    Metformin and the gastrointestinal tract

    Get PDF
    Metformin is an effective agent with a good safety profile that is widely used as a first-line treatment for type 2 diabetes, yet its mechanisms of action and variability in terms of efficacy and side effects remain poorly understood. Although the liver is recognised as a major site of metformin pharmacodynamics, recent evidence also implicates the gut as an important site of action. Metformin has a number of actions within the gut. It increases intestinal glucose uptake and lactate production, increases GLP-1 concentrations and the bile acid pool within the intestine, and alters the microbiome. A novel delayed-release preparation of metformin has recently been shown to improve glycaemic control to a similar extent to immediate-release metformin, but with less systemic exposure. We believe that metformin response and tolerance is intrinsically linked with the gut. This review examines the passage of metformin through the gut, and how this can affect the efficacy of metformin treatment in the individual, and contribute to the side effects associated with metformin intolerance

    Metformin inhibits melanoma development through autophagy and apoptosis mechanisms

    Get PDF
    Metformin is the most widely used antidiabetic drug because of its proven efficacy and limited secondary effects. Interestingly, recent studies have reported that metformin can block the growth of different tumor types. Here, we show that metformin exerts antiproliferative effects on melanoma cells, whereas normal human melanocytes are resistant to these metformin-induced effects. To better understand the basis of this antiproliferative effect of metformin in melanoma, we characterized the sequence of events underlying metformin action. We showed that 24 h metformin treatment induced a cell cycle arrest in G0/G1 phases, while after 72 h, melanoma cells underwent autophagy as demonstrated by electron microscopy, immunochemistry, and by quantification of the autolysosome-associated LC3 and Beclin1 proteins. In addition, 96 h post metformin treatment we observed robust apoptosis of melanoma cells. Interestingly, inhibition of autophagy by knocking down LC3 or ATG5 decreased the extent of apoptosis, and suppressed the antiproliferative effect of metformin on melanoma cells, suggesting that apoptosis is a consequence of autophagy. The relevance of these observations were confirmed in vivo, as we showed that metformin treatment impaired the melanoma tumor growth in mice, and induced autophagy and apoptosis markers. Taken together, our data suggest that metformin has an important impact on melanoma growth, and may therefore be beneficial in patients with melanoma
    • …
    corecore