619 research outputs found
The Natural Logarithm on Time Scales
We define an appropriate logarithm function on time scales and present its
main properties. This gives answer to a question posed by M. Bohner in [J.
Difference Equ. Appl. {\bf 11} (2005), no. 15, 1305--1306].Comment: 6 page
Studies in the isoquinoline series Part III. synthesis of some 5:6- and 5: 8-dimethoxyisoquinolines
A series of 3:4-dihydro-5:6-dimethoxy and 3:4-dihydro-5:8-di-methoxyisoquinolines are repoited. These have been dehydro genated to the corresponding isoquinoline derivatives
A General Backwards Calculus of Variations via Duality
We prove Euler-Lagrange and natural boundary necessary optimality conditions
for problems of the calculus of variations which are given by a composition of
nabla integrals on an arbitrary time scale. As an application, we get
optimality conditions for the product and the quotient of nabla variational
functionals.Comment: Submitted to Optimization Letters 03-June-2010; revised 01-July-2010;
accepted for publication 08-July-201
Monotone iterative procedure and systems of a finite number of nonlinear fractional differential equations
The aim of the paper is to present a nontrivial and natural extension of the
comparison result and the monotone iterative procedure based on upper and lower
solutions, which were recently established in (Wang et al. in Appl. Math. Lett.
25:1019-1024, 2012), to the case of any finite number of nonlinear fractional
differential equations.The author is very grateful to the reviewers for the remarks, which improved the final version of the manuscript. This
article was financially supported by University of Łódź as a part of donation for the research activities aimed at the
development of young scientists, grant no. 545/1117
A periodic boundary value problem for nonlinear singular differential systems with ‘maxima’
décembre 20052005/12 (N254)-2005/12.Appartient à l’ensemble documentaire : UnivJeun
A caricature of a singular curvature flow in the plane
We study a singular parabolic equation of the total variation type in one
dimension. The problem is a simplification of the singular curvature flow. We
show existence and uniqueness of weak solutions. We also prove existence of
weak solutions to the semi-discretization of the problem as well as convergence
of the approximating sequences. The semi-discretization shows that facets must
form. For a class of initial data we are able to study in details the facet
formation and interactions and their asymptotic behavior. We notice that our
qualitative results may be interpreted with the help of a special composition
of multivalued operators
Structure of tylophorine
This article does not have an abstract
Simulation-based reachability analysis for nonlinear systems using componentwise contraction properties
A shortcoming of existing reachability approaches for nonlinear systems is
the poor scalability with the number of continuous state variables. To mitigate
this problem we present a simulation-based approach where we first sample a
number of trajectories of the system and next establish bounds on the
convergence or divergence between the samples and neighboring trajectories. We
compute these bounds using contraction theory and reduce the conservatism by
partitioning the state vector into several components and analyzing contraction
properties separately in each direction. Among other benefits this allows us to
analyze the effect of constant but uncertain parameters by treating them as
state variables and partitioning them into a separate direction. We next
present a numerical procedure to search for weighted norms that yield a
prescribed contraction rate, which can be incorporated in the reachability
algorithm to adjust the weights to minimize the growth of the reachable set
- …