491 research outputs found

    Low Power, Area Efficient Architecture for Successive Cancellation Decoder

    Get PDF
    Polar codes have recently emerged as an error-correcting code and have become popular owing to their capacity-achieving nature. Polar code based communication system primarily consists of two parts, including Polar Encoder and Decoder. Successive Cancellation Decoder is one of the methods used in the decoding process. The Successive Cancellation Decoder is a recursive structure built with the building block called Processing Element. This article proposes a low power, area-efficient architecture for the Successive Cancellation Decoder for polar codes. Successive Cancellation Decoder with code length 1024 and code rate 0.5 was designed in Verilog HDL and implemented using 45-nm CMOS technology. The proposed work focuses on developing an area-efficient Successive Cancellation Decoder architecture by presenting a new Processing Element architecture. The proposed architecture has produced about 35% lesser area with a 12% reduced gate count. Moreover, power is also reduced by 50%. A substantial reduction in the latency and improvement in the Technology Scaled Normalized Throughput value was observed

    Diabetic Retinopathy Analysis

    Get PDF
    Diabetic retinopathy is one of the common complications of diabetes. Unfortunately, in many cases the patient is not aware of any symptoms until it is too late for effective treatment. Through analysis of evoked potential response of the retina, the optical nerve, and the optical brain center, a way will be paved for early diagnosis of diabetic retinopathy and prognosis during the treatment process. In this paper, we present an artificial-neural-network-based method to classify diabetic retinopathy subjects according to changes in visual evoked potential spectral components and an anatomically realistic computer model of the human eye under normal and retinopathy conditions in a virtual environment using 3D Max Studio and Windows Movie Maker

    Cultural adaptation of Alzheimer’s disease assessment scale–cognitive subscale for use in India and validation of the Tamil version for South Indian population

    Get PDF
    Objective: Currently no standardized tools are available in the Indian languages to assess changes in cognition. Our objectives are to culturally adapt the Alzheimer’s disease Assessment Scale–Cognitive Subscale (ADAS-Cog) for use in India and to validate the Tamil version in an urban Tamil-speaking older adult population. / Methods: Two panels of key stakeholders and a series of qualitative interviews informed the cultural and linguistic adaptation of the ADAS-Cog-Tamil. Issues related to levels of literacy were considered during the adaptation. Validation of the ADAS-Cog-Tamil was completed with 107 participants − 54 cases with a confirmed diagnosis of mild-moderate dementia, and 53 age, gender and education matched controls. Concurrent validity was examined with the Vellore Screening Instrument for Dementia (VSID) in Tamil. Internal consistency using Cronbach’s alpha, sensitivity and specificity data using the Area under the Receiver Operating Characteristics (AUROC) curve values were computed. Inter-rater reliability was established in a subsample. / Results: The ADAS-Cog-Tamil shows good internal consistency (α = 0.91), inter-rater reliability and concurrent validity (with VSID-Patient version: r = –0.84 and with VSID-Caregiver version: r = –0.79). A cut-off score of 13, has a specificity of 89% and sensitivity of 90% for the diagnosis of dementia. / Conclusion: ADAS-Cog-Tamil, derived from a rigorous, replicable linguistic and cultural adaptation process involving service users and experts, shows good psychometric properties despite the limitations of the study. It shows potential for use in clinical settings with urban Tamil speaking populations. The English version of the tool derived from the cultural adaptation process could be used for further linguistic adaptation across South Asia

    Teixobactin analogues reveal enduracididine to be non-essential for highly potent antibacterial activity and lipid II binding

    Get PDF
    Abstract. Teixobactin is a highly promising antibacterial depsipeptide consisting of four D-amino acids and a rare L-allo-enduracididine amino acid. L-allo-enduracididine is reported to be important for the highly potent antibacterial activity of teixobactin. However, it is also a key limiting factor in the development of potent teixobactin analogues due to several synthetic challenges such as it is not commercially available, requires a multistep synthesis, long and repititive couplings (16-30 hours). Due to all these challenges, the total synthesis of teixobactin is laborious and low yielding (3.3%). In this work, we have identified a unique design and developed a rapid synthesis (10 min μwave assisted coupling per amino acid, 30 min cyclisation) of several highly potent analogues of teixobactin with yields of 10-24% by replacing the L-allo-enduracididine with commercially available non-polar residues such as leucine and isoleucine. Most importantly, the Leu10-teixobactin and Ile10-teixobactin analogues have shown highly potent antibacterial activity against a broader panel of MRSA and Enterococcus faecalis (VRE). Time-kill kinetics data indicate that both these compounds are superior to vancomycin against MRSA (16 times more potent). Furthermore, these synthetic analogues displayed identical antibacterial activity to natural teixobactin (MIC 0.25 μg/ml) against MRSA ATCC 33591 despite their simpler design and ease of synthesis. Detailed NMR analyses have provided us with further insight into the 3D structures of these important analogues. We have confirmed lipid II binding and measured the binding affinities of individual amino acid residues of Ala10-teixobactin towards geranyl pyrophosphate (a lipid II mimic) by NMR to understand the nature and strength of binding interactions of the amino acid residues. An antagonization assay further confirms a lipid II mediated mode of action. Contrary to current understanding, we have shown that a cationic amino acid at position 10 is not essential for target (lipid II) binding and potent antibacterial activity of teixobactin. We thus provide strong evidence contrary to the many assumptions made about the mechanism of action of this exciting new antibiotic. Introduction of a non-cationic residue at position 10 allows for tremendous diversification in terms of the design and synthesis of highly potent teixobactin analogues and lays the foundations for the development of teixobactin analogues as new drug-like molecules to target MRSA and Mycobacterium tuberculosis

    Ontology Mapping and Data Discovery for the Translational Investigator

    Get PDF
    An integrated data repository (IDR) containing aggregations of clinical, biomedical, economic, administrative, and public health data is a key component of an overall translational research infrastructure. But most available data repositories are designed using standard data warehouse architecture that employs arbitrary data encoding standards, making queries across disparate repositories difficult. In response to these shortcomings we have designed a Health Ontology Mapper (HOM) that translates terminologies into formal data encoding standards without altering the underlying source data. We believe the HOM system promotes inter-institutional data sharing and research collaboration, and will ultimately lower the barrier to developing and using an IDR

    Structural, thermal, and optical analysis of zinc boro-aluminosilicate glasses containing different alkali and alkaline modifier ions

    Get PDF
    In this article, structural, thermal, and optical properties of zinc boro-aluminosilicate glasses with addition of different alkali (Li, Na, and K) and alkaline oxides (Mg, Ca, Sr, and Ba) have been reported. 10 mol% of alkali and alkaline oxides were incorporated into Zinc boro-aluminosilicate glasses and all these glasses possess high optical quality. Samples were characterized using X-ray diffraction (XRD), scanning electron microscopy and energy dispersive X-ray analysis (SEM-EDAX), attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, Raman spectroscopy, thermo-gravimetric analysis (TGA), differential scanning calorimetry (DSC), and optical absorption spectroscopy. The XRD and SEM measurements demonstrated the amorphous origin for all the prepared glasses and EDAX confirms that all the elements are presented in the prepared glasses. The presence of various functional groups such as triangular and tetrahedral-borate (BO3 and BO4) was confirmed by ATR-FTIR and Raman spectra, and both of the ATR-FTIR and Raman spectra show lower phonon energy for H3 (K2O) in alkali series, and H7 (BaO) for alkaline. From TGA analysis we found a lower weight loss < 0.1% in K2O, MgO, and BaO; and from the DSC profiles the glass transition temperature (Tg), onset crystallization temperature (Tx), crystallization temperature (Tc), and melting temperature (Tm) were identified and related different thermal parameters are evaluated. Alkali and alkaline influenced Zinc boro-aluminosilicate glasses demonstrate excellent glass stability. From the optical absorption spectra, we calculated cut-off wavelength and it shows spectral shifting to longer wavelength with alkali (Li → Na → K), and alkaline (Mg → Ca → Sr → Ba) modifiers. We investigated optical band gap energy also for allowed transitions in UV–visible region using three methods; direct, indirect, and absorption spectrum fitting (ASF)
    corecore