748 research outputs found

    The impact of interventions to promote healthier ready-to-eat meals (to eat in, to take away or to be delivered) sold by specific food outlets open to the general public: a systematic review.

    Get PDF
    INTRODUCTION: Ready-to-eat meals sold by food outlets that are accessible to the general public are an important target for public health intervention. We conducted a systematic review to assess the impact of such interventions. METHODS: Studies of any design and duration that included any consumer-level or food-outlet-level before-and-after data were included. RESULTS: Thirty studies describing 34 interventions were categorized by type and coded against the Nuffield intervention ladder: restrict choice = trans fat law (n = 1), changing pre-packed children's meal content (n = 1) and food outlet award schemes (n = 2); guide choice = price increases for unhealthier choices (n = 1), incentive (contingent reward) (n = 1) and price decreases for healthier choices (n = 2); enable choice = signposting (highlighting healthier/unhealthier options) (n = 10) and telemarketing (offering support for the provision of healthier options to businesses via telephone) (n = 2); and provide information = calorie labelling law (n = 12), voluntary nutrient labelling (n = 1) and personalized receipts (n = 1). Most interventions were aimed at adults in US fast food chains and assessed customer-level outcomes. More 'intrusive' interventions that restricted or guided choice generally showed a positive impact on food-outlet-level and customer-level outcomes. However, interventions that simply provided information or enabled choice had a negligible impact. CONCLUSION: Interventions to promote healthier ready-to-eat meals sold by food outlets should restrict choice or guide choice through incentives/disincentives. Public health policies and practice that simply involve providing information are unlikely to be effective

    Open Educational Resources in Kentucky

    Get PDF
    Open educational resources (OER) play an increasingly important role in the education landscape, with increased awareness and use year over year (Coffey). Often, academic libraries play a supporting role for instructors as they locate, adopt, and create OER for their courses. In this article, we will provide an introduction to OER, outline some current trends in open education, and describe a few of the OER initiatives currently underway in Kentucky’s college and university libraries

    The response of perennial and temporary headwater stream invertebrate communities to hydrological extremes

    Get PDF
    The headwaters of karst rivers experience considerable hydrological variability, including spates and streambed drying. Extreme summer flooding on the River Lathkill (Derbyshire, UK) provided the opportunity to examine the invertebrate community response to unseasonal spate flows, flow recession and, at temporary sites, streambed drying. Invertebrates were sampled at sites with differing flow permanence regimes during and after the spates. Following streambed drying at temporary sites, dewatered surface sediments were investigated as a refugium for aquatic invertebrates. Experimental rehydration of these dewatered sediments was conducted to promote development of desiccation-tolerant life stages. At perennial sites, spate flows reduced invertebrate abundance and diversity, whilst at temporary sites, flow reactivation facilitated rapid colonisation of the surface channel by a limited number of invertebrate taxa. Following streambed drying, 38 taxa were recorded from the dewatered and rehydrated sediments, with Oligochaeta being the most abundant taxon and Chironomidae (Diptera) the most diverse. Experimental rehydration of dewatered sediments revealed the presence of additional taxa, including Stenophylax sp. (Trichoptera: Limnephilidae) and Nemoura sp. (Plecoptera: Nemouridae). The influence of flow permanence on invertebrate community composition was apparent despite the aseasonal high-magnitude flood events

    Fine sediment reduces vertical migrations of Gammarus pulex (Crustacea: Amphipoda) in response to surface water loss

    Get PDF
    Surface and subsurface sediments in river ecosystems are recognized as refuges that may promote invertebrate survival during disturbances such as floods and streambed drying. Refuge use is spatiotemporally variable, with environmental factors including substrate composition, in particular the proportion of fine sediment (FS), affecting the ability of organisms to move through interstitial spaces. We conducted a laboratory experiment to examine the effects of FS on the movement of Gammarus pulex Linnaeus (Crustacea: Amphipoda) into subsurface sediments in response to surface water loss. We hypothesized that increasing volumes of FS would impede and ultimately prevent individuals from migrating into the sediments. To test this hypothesis, the proportion of FS (1–2 mm diameter) present within an open gravel matrix (4–16 mm diameter) was varied from 10 to 20% by volume in 2.5% increments. Under control conditions (0% FS), 93% of individuals moved into subsurface sediments as the water level was reduced. The proportion of individuals moving into the subsurface decreased to 74% at 10% FS, and at 20% FS no individuals entered the sediments, supporting our hypothesis. These results demonstrate the importance of reducing FS inputs into river ecosystems and restoring FS-clogged riverbeds, to promote refuge use during increasingly common instream disturbances

    The Ecm11-Gmc2 complex promotes synaptonemal complex formation through assembly of transverse filaments in budding yeast

    Get PDF
    During meiosis, homologous chromosomes pair at close proximity to form the synaptonemal complex (SC). This association is mediated by transverse filament proteins that hold the axes of homologous chromosomes together along their entire length. Transverse filament proteins are highly aggregative and can form an aberrant aggregate called the polycomplex that is unassociated with chromosomes. Here, we show that the Ecm11-Gmc2 complex is a novel SC component, functioning to facilitate assembly of the yeast transverse filament protein, Zip1. Ecm11 and Gmc2 initially localize to the synapsis initiation sites, then throughout the synapsed regions of paired homologous chromosomes. The absence of either Ecm11 or Gmc2 substantially compromises the chromosomal assembly of Zip1 as well as polycomplex formation, indicating that the complex is required for extensive Zip1 polymerization. We also show that Ecm11 is SUMOylated in a Gmc2-dependent manner. Remarkably, in the unSUMOylatable ecm11 mutant, assembly of chromosomal Zip1 remained compromised while polycomplex formation became frequent. We propose that the Ecm11-Gmc2 complex facilitates the assembly of Zip1 and that SUMOylation of Ecm11 is critical for ensuring chromosomal assembly of Zip1, thus suppressing polycomplex formation

    Multi-ancestry genome-wide association meta-analysis of Parkinson's disease.

    Get PDF
    Although over 90 independent risk variants have been identified for Parkinson's disease using genome-wide association studies, most studies have been performed in just one population at a time. Here we performed a large-scale multi-ancestry meta-analysis of Parkinson's disease with 49,049 cases, 18,785 proxy cases and 2,458,063 controls including individuals of European, East Asian, Latin American and African ancestry. In a meta-analysis, we identified 78 independent genome-wide significant loci, including 12 potentially novel loci (MTF2, PIK3CA, ADD1, SYBU, IRS2, USP8, PIGL, FASN, MYLK2, USP25, EP300 and PPP6R2) and fine-mapped 6 putative causal variants at 6 known PD loci. By combining our results with publicly available eQTL data, we identified 25 putative risk genes in these novel loci whose expression is associated with PD risk. This work lays the groundwork for future efforts aimed at identifying PD loci in non-European populations

    Mouse Gestation Length Is Genetically Determined

    Get PDF
    Background: Preterm birth is an enormous public health problem, affecting over 12 % of live births and costing over $26 billion in the United States alone. The causes are complex, but twin studies support the role of genetics in determining gestation length. Despite widespread use of the mouse in studies of the genetics of preterm birth, there have been few studies that actually address the precise natural gestation length of the mouse, and to what degree the timing of labor and birth is genetically determined. Methodology/Principal Findings: To further develop the mouse as a genetic model of preterm birth, we developed a highthroughput monitoring system and measured the gestation length in 15 inbred strains. Our results show an unexpectedly wide variation in overall gestation length between strains that approaches two full days, while intra-strain variation is quite low. Although litter size shows a strong inverse correlation with gestation length, genetic difference alone accounts for a significant portion of the variation. In addition, ovarian transplant experiments support a primary role of maternal genetics in the determination of gestation length. Preliminary analysis of gestation length in the C57BL/6J-Chr # A/J /NaJ chromosome substitution strain (B.A CSS) panel suggests complex genetic control of gestation length. Conclusions/Significance: Together, these data support the role of genetics in regulating gestation length and present th
    • …
    corecore