10,253 research outputs found

    Fresh-Register Automata

    Get PDF
    What is a basic automata-theoretic model of computation with names and fresh-name generation? We introduce Fresh-Register Automata (FRA), a new class of automata which operate on an infinite alphabet of names and use a finite number of registers to store fresh names, and to compare incoming names with previously stored ones. These finite machines extend Kaminski and Francez’s Finite-Memory Automata by being able to recognise globally fresh inputs, that is, names fresh in the whole current run. We exam-ine the expressivity of FRA’s both from the aspect of accepted languages and of bisimulation equivalence. We establish primary properties and connections between automata of this kind, and an-swer key decidability questions. As a demonstrating example, we express the theory of the pi-calculus in FRA’s and characterise bisimulation equivalence by an appropriate, and decidable in the finitary case, notion in these automata

    The X-ray luminosity function of AGN at z~3

    Full text link
    We combine Lyman-break colour selection with ultradeep (> 200 ks) Chandra X-ray imaging over a survey area of ~0.35 deg^2 to select high redshift AGN. Applying careful corrections for both the optical and X-ray selection functions, the data allow us to make the most accurate determination to date of the faint end of the X-ray luminosity function (XLF) at z~3. Our methodology recovers a number density of X-ray sources at this redshift which is at least as high as previous surveys, demonstrating that it is an effective way of selecting high z AGN. Comparing to results at z=1, we find no evidence that the faint slope of the XLF flattens at high z, but we do find significant (factor ~3.6) negative evolution of the space density of low luminosity AGN. Combining with bright end data from very wide surveys we also see marginal evidence for continued positive evolution of the characteristic break luminosity L*. Our data therefore support models of luminosity-dependent density evolution between z=1 and z=3. A sharp upturn in the the XLF is seen at the very lowest luminosities (Lx < 10^42.5 erg s^-1), most likely due to the contribution of pure X-ray starburst galaxies at very faint fluxes.Comment: 16 pages, 9 figures, accepted for publication in MNRA

    Coherent spin manipulation in an exchange-only qubit

    Get PDF
    Initialization, manipulation, and measurement of a three-spin qubit are demonstrated using a few-electron triple quantum dot, where all operations can be driven by tuning the nearest-neighbor exchange interaction. Multiplexed reflectometry, applied to two nearby charge sensors, allows for qubit readout. Decoherence is found to be consistent with predictions based on gate voltage noise with a uniform power spectrum. The theory of the exchange-only qubit is developed and it is shown that initialization of only two spins suffices for operation. Requirements for full multi-qubit control using only exchange and electrostatic interactions are outlined.Comment: related work at http://marcuslab.harvard.ed

    Freezing of soft spheres: A critical test for weighted-density-functional theories

    Get PDF
    This is the publisher's version, also available electronically from http://journals.aps.org/pra/abstract/10.1103/PhysRevA.42.4810We study the freezing properties of systems with inverse-power and Yukawa interactions (soft spheres), using recently developed weighted-density-functional theories. We find that the modified weighted-density-functional approximation (MWDA) of Denton and Ashcroft yields results for the liquid to face-centered-cubic (fcc) structure transition that represent a significant improvement over those of earlier ‘‘second-order’’ density-functional freezing theories; however, this theory, like the earlier ones, fails to predict any liquid to body-centered-cubic (bcc) transition, even under conditions where the computer simulations indicate that this should be the equilibrium solid structure. In addition, we show that both the modified effective-liquid approximation (MELA) of Baus [J. Phys. Condens. Matter 2, 2111 (1990)] and the generalized effective-liquid approximation of Lutsko and Baus [Phys. Rev. Lett. 64, 761 (1990)], while giving excellent results for the freezing of hard spheres, fail completely to predict freezing into either fcc or bcc solid phases for soft inverse-power potentials. We also give an alternate derivation of the MWDA that makes clearer its connection to earlier theories

    Comparison of weighted-density-functional theories for inhomogeneous liquids

    Get PDF
    This is the publisher's version, also available electronically from http://journals.aps.org/pra/abstract/10.1103/PhysRevA.42.4806.Three recent weighted-density-functional (WDF) theories are critically examined in terms of their ability to describe correctly the structure of a hard-sphere fluid at a hard wall. A new derivation of the Curtin-Ashcroft WDF theory is given that clarifies the basic approximations behind this formulation and brings out the close relationship between their work and the WDF theories of Meister-Kroll and Groot–van der Eerden. The condition that the second functional derivative of the approximate Helmholtz free-energy functional yields the correct two-particle direct-correlation function in the homogeneous limit is found to be of crucial importance in determining good liquid structures

    Measurement of Temporal Correlations of the Overhauser Field in a Double Quantum Dot

    Full text link
    In quantum dots made from materials with nonzero nuclear spins, hyperfine coupling creates a fluctuating effective Zeeman field (Overhauser field) felt by electrons, which can be a dominant source of spin qubit decoherence. We characterize the spectral properties of the fluctuating Overhauser field in a GaAs double quantum dot by measuring correlation functions and power spectra of the rate of singlet-triplet mixing of two separated electrons. Away from zero field, spectral weight is concentrated below 10 Hz, with 1/f^2 dependence on frequency, f. This is consistent with a model of nuclear spin diffusion, and indicates that decoherence can be largely suppressed by echo techniques.Comment: related papers available at http://marcuslab.harvard.ed

    Conditional operation of a spin qubit

    Full text link
    We report coherent operation of a singlet-triplet qubit controlled by the arrangement of two electrons in an adjacent double quantum dot. The system we investigate consists of two pairs of capacitively coupled double quantum dots fabricated by electrostatic gates on the surface of a GaAs heterostructure. We extract the strength of the capacitive coupling between qubit and double quantum dot and show that the present geometry allows fast conditional gate operation, opening pathways to multi-qubit control and implementation of quantum algorithms with spin qubits.Comment: related papers here: http://marcuslab.harvard.ed

    Mathematical and computer modeling of electro-optic systems using a generic modeling approach

    Get PDF
    The conventional approach to modelling electro-optic sensor systems is to develop separate models for individual systems or classes of system, depending on the detector technology employed in the sensor and the application. However, this ignores commonality in design and in components of these systems. A generic approach is presented for modelling a variety of sensor systems operating in the infrared waveband that also allows systems to be modelled with different levels of detail and at different stages of the product lifecycle. The provision of different model types (parametric and image-flow descriptions) within the generic framework can allow valuable insights to be gained
    corecore