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Freezing of soft spheres: A critical test for weighted-density-functional theories
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We study the freezing properties of systems with inverse-power and Yukawa interactions
(soft spheres), using recently developed weighted-density-functional theories. We find that the
modified weighted-density-functional approximation (MWDA) of Deuton and Ashcroft yields
results for the liquid to face-centered-cubic (fcc) structure transition that represent a significant
improvement over those of earlier "second-order" density-functional freezing theories; however,
this theory, like the earlier ones, fails to predict any liquid to body-centered-cubic (bcc) tran-
sition, even under conditions where the computer simulations indicate that this should be the
equilibrium solid structure. In addition, we show that both the modified effective-liquid ap-
proximation (MELA) of Baus [J. Phys. Condens. Matter 1, 3131 (1989)] aud the generalized
effective-liquid approximation of Lutsko aud Baus [Phys. Rev. Lett. 64, 761 (1990)],while giving
excellent results for the freezing of hard spheres, fail completely to predict freezing into either
fcc or bcc solid phases for soft inverse-power potentials. We also give an alternate derivation of
the MWDA that makes clearer its connection to earlier theories.

I. INTRODUCTION

Over the past decade, the use of classical density-
functional theory (DFT) has become increasingly pop-
ular in the study of solid-liquid phase transitions. ~ z The
popularity of these methods is, at least in part, due
to their success at providing an accurate description of
the fluid to close-packed solid transition of a system of
hard spheres. 11 Similar encouraging results have also
been obtained for the freezing of a Lennard-Jones liq-
uid into a face-centered-cubic (fcc) solid. ' On the
basis of these results, it seems that density-functional
theory works well —at least for systems of monatomic
particles with "hard" interactions (i.e. , those with steep
repulsive parts) for which the equilibruim solid phase is
close packed. A natural question now arises: Does the
success of DFT in the case of "hard" potentials extend
as well to systems of particles with "softer" interactions,
where the thermodynamically stable solid phase is not
necessarily close packed? This question was answered,
in part, by Barrat et al. ' in a systematic study of the
freezing properties of repulsive inverse-power potentials:

V(P)=E( )
For a class of density functionals in which the solid

free-energy functional is approximated by a second-order
functional Taylor expansion about a homogeneous refer-
ence phase, Barrat et o,l. showed that the densities at
which the liquid and fcc solid co-exist are consistently
overestimated; the disagreement with the computer-
simulation data 8 increases dramatically as softer
(smaller n) potentials are considered (from about 10% in

the n = 12 case to over 100% for n = 4). More damaging
is the failure of these "second-order" theories to predict,

for any value of n, a stable body-centered-cubic (bcc)
solid phase (or even a metastable one, for that matter).
This result is in direct contradiction to the computer-
simulation findings that the equilibrium crystal phase at
freezing should have a (non-close-packed) bcc structure
for n ( 6. Therefore, the truncation of the functional
expansion at second order does not result in a suitable
description of the solid phase for these soft-sphere sys-
tems, and higher-order contributions must somehow be
taken into account. Unfortunately, a straightforward ex-
tention of these density-functional perturbation methods
to include the higher-order eff'ects is difficult since the
third- or higher-order direct correlation functions of the
homogeneous liquid phase, which would be the coeffi-
cients of such an expansion, are, in general, unknown.

(Some attempts at including approximate expressions for
the three-body direct-correlation functions in the freez-

ing calculation have, however, met with some qualitative
success. )

Recently, several versions of DFT,s ~0 ~ zz belonging
to the class of so-called weighted-density-functional the-
ories (WDFT), have been proposed. By weighting the
local density with a suitably chosen weighting function,
they achieve an approximate resurnmation of the higher-
order terms in the solid free-energy functional, while still
requiring knowledge of only the two-particle direct corre-
lations in the homogeneous liquid. All of these new for-

mulations give good freezing results for the hard-sphere

(HS) system.
In contrast to the earlier theories, these new meth-

ods also yield well-defined free-energy minima for the bcc
hard-sphere solid, as long as the shear-mode fluctuations,
to which the bcc HS solid is known to be unstable (see
Sec. III), are a priori excluded from the calculation. The
resulting bcc free energies compare well with the results
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of Monte Carlo calculations performed within a similarly
restricted phase space. ~s

In this work, we undertake a systematic study of the
freezing properties of two types of soft spheres using
weighted-density-functional methods in order to deter-
mine whether or not the implicit addition of approximate
higher-order terms corrects the qualitative deficiencies of
the "second-order" theories for these systems. The first
potential we consider is the previously mentioned inverse-

power interaction, defined in Eq. (I). The second involves

spheres interacting via a repulsive Yukawa potential,

which is a very good model of the interactions in

monodisperse colloids. z4 zs The advantage of using these
two systems for the present study is that the range of
interaction of both potentials can be tuned over a wide

range through the variation of a single parameter (n for
inverse powers and K for the Yukawa spheres). Also, good
computer-simulation phase-transition data are available
for both interaction types.

By comparing the weighted-density-functional results
for these systems with both the "second-order" DFT
results and the computer-simulation findings, we will,

hopefully, obtain a clearer picture of the current state
of the density-functional theory of freezing. In this sense
our current work complements and extends that of Barrat
et {il i4 In the .following section, we briefly summarize the
various forms of density-functional theory considered in
this work, with special emphasis on the weighted-density
formalisms. A new derivation of the modified weighted-
density approximation of Denton and Ashocroft's is also
presented that makes clearer its connection to earlier
theories. Sections III and IV contain the results of our
weighted-density-functional study of the freezing of the
inverse-power and Yukawa systems. These results are
compared with those of earlier theories and with the
computer-simulation findings. In Sec. V, we summarize
our results and make some concluding remarks.

II. SUMMARY OF DENSITY-FUNCTIONAL
FORMALISM

In the canonical ensemble, a density-functional theory
is a procedure for determining the Helmholtz free en-

ergy F associated with a given spatially dependent single-
particle density p(r); that is, F is determined as a func
tional of p(r). The equilibrium free energy and micro-
scopic density can then be found by minimizing this func-
tional, F[p], over the space of single-particle densities—
subject to the constraint that the volume and total num-
ber of particles remains fixed. For a detailed description
of basic classical density-functional theory and its math-
ematical justifications, see the review by Evans.

The functional F[p] can be written as the sum of an
ideal part Fd[p] and an excess part F,„[p] due to the
interparticle interactions:

F [pr] = f drp(r){in[A p(r)] —1), (4)

where A is the thermal wavelength. The excess part is, in

general, unknown; therefore, the central task of a density-
functional theory is to provide a suitable approximation
scheme for this quantity.

Most density-functional theories begin by defining the
n-body direct-correlation functions c~"l(ri, ..., r„; [p]) in
terms of the functional derivatives of F,„[p]:

For arbitrary p(r), these correlation functions, like F[p]
itself, are unknown, except in the homogeneous density
(liquid) limit, where, due to the advances in liquid-state
theory over the past three decades, they can be deter-
mined for n & 2. Density-functional theories of freezing
exploit this knowledge of the liquid correlation functions
to try to obtain approximations for those in an inhomo-
geneous phase.

The first and simplest DFT of freezing is due to Ra-
makrishnan and Yussouff. z This theory was later refor-
mulated in the language of classical density functionals
by Haymet and Oxtoby (HO). In this theory, the free
energy of the inhomogeneous phase (here, the solid) is
expanded in a functional Taylor expansion about a refer-
ence liquid density. This expansion is subsequently trun-
cated at second order to yield

l)P' ]p]=()F.(p) —rl (i) f «[p(r ) —p[

drydr2 c( ri —rg, p
(~)

" [p(r ) p][p(r&) pl+ ' ' ' (f))

In the Haymet-Oxtoby formulation, the reference den-
sity is chosen to be that of the equilibrium liquid, and
for that reason, the functional that is minimized is ac-
tually the grand-canonical-potential functional obtained
from F[p] by Legendre transform:

~lp[ = F[p] p f dr p(r).

A modification of this "second-order" approach was
later developed by Baus and Colot and is called the
effective-liquid approximation (ELA). The free-energy
functional they consider is of the same form as the HO
functional [Eq. (6)] with the reference density chosen
to equal the bulk solid density; however, the function
c& &(~ ri —r2 ~; p) is not evaluated at the reference den-
sity, but at some "effective" density chosen such that the
first peak of the Fourier transform of c~2~ coincides with
the first nonzero reciprocal-lattice vector of the solid.

F[P] = F;d[P] y F,„[P] .

The ideal part is known exactly, and for a monatomic
system is given by
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In the hope of correcting the deficiencies of the
second-order DFT's, a new approach was initiated by
Tarazona. This weighted-density-functional method is
a modification of the usual local-density approximation
(LDA) for inhomogeneous systems. In the LDA, the free-
energy density at a point r in a system with inhomo-
geneous single-particle density p(r) is given by the free
energy of a homogeneous system, evaluated at the value
of the single-particle density at point r. However, for
very strongly inhomogeneous systems such as a solid, the
LDA breaks down. To remedy this, the local density is
averaged over a small region using a weighting function
u)(I ri —r2 I; p) to create a coarse-grained or "weighted"
density p(r ):

p(rq) = f droop(rq) w( ] rq —rq ];p(rq )) . (8)

dr2n)(I ri —r2 I; p) = 1

The local-density approximation is then applied to this
weighted density; that is, the free-energy functional is
given by

PFlp] = f arPfo{i(r))u(r),

where f{)(p) is the excess Helmholtz free energy per par-
ticle of a homogeneous system of density p. The task of a
successful weighted-density-functional theory is to choose
a weighting function that leads to a good description of
the structure and thermodynamics of the inhomogeneous
phase.

These weighted-density-functional theories can be fur-
ther divided into two classes. The first and computa-
tionally more involved class assumes a spatially inho-
mogeneous weighted density. The weighted-denstity ap-
proximation (WDA) of Curtin and Ashcrofts is of this
type. The second, simpler class assumes instead a con-
stant weighted density. This approach was first taken
by Denton and Ashcroft in their modified weighted-
density-functional approximation (MWDA); s except for
the form of the weighted density, this theory makes the
same fundamental assumptions as the earlier and more
complicated WDA. The very recent modified eH'ective-
liquid approximation (MELA) of Baus22 and general-
ized effective-liquid approximation (GELA) of Lutsko
and Baus are of such a form that they can be formu-
lated using either a constant or a spatially dependent
weighted density with only minor changes in the result-
ing equations.

In the weighted-density approximation of Curtin and
Ashcroft, the weighting function i{)(I ri —r2 I; p) is cho-
sen such that both the free energy and the two-particle
direct-correlation function c(2) [as defined in Eq. (5)] are
exactly reproduced in the limit of a homogeneous den-
sity. The first of these two requirements is guaranteed
if the weighting function is assumed to be normalized to
unity:

(12)

which follows from Eq. (5), is satisfied by the WDA func-
tional in the homogeneous density limit. This sum rule
ensures that the functional includes to infinite order all
parts of the higher-order correlation functions that are
fixed by the thermodynamics. This weighted density is
then used to calculate the excess free energy via Eq. (9).

As one can see, the implementation of the WDA is
rather involved. In the simpler MWDA of Denton and
Ashcroft, is the free energy of the inhomogeneous phase
is given by the homogeneous free energy evalulated at a
spatially independent weighted density:

P+..[p] = &Pfo(p),

where the weighted density is defined by

1
p = — drip(ri) dr2p(r2)i{)(I ri —r2 I; p) . (14)

The weighting function i{) is determined from the same
two requirements used in the WDA. The advantage of the
MWDA is that the resulting equation for the weighting
function is not a complicated difI'erential equation as is
the WDA, but is easily solved algebraically to give

i{)(l ri r2 I; p) = —
2 „,I

c'"(I » —r2 I' p)

p&fo
v

Since the MWDA satisfies the same set of sum rules as
the WDA and therefore includes the same subset of "ex-
act" higher-order terms, the MWDA should be regarded
as occupying essentially the same level of approximation
as the WDA for the class of problems considered here.

For the hard-sphere freezing transition, the predictions
of the MWDA are nearly identical to those of the WDA,
and, for the softer potentials considered in this work, pre-

The second requirement determines the form of w: func-
tionally differentiating PF,„[p] [as defined by Eqs. (8)—
(10)] twice, taking the homogeneous limit p(r) ~ p, and
setting the result equal to the negative of the homoge-
neous two-particle direct-correlation function c& & at den-
sity p, as prescribed by Eq. (2) (with n = 2), results in
an integro-differential equation for the weighting function
in terms of c(2). This equation is most easily represented
and solved in Fourier space:

&'-c"'(» p) = 2fs(p)~(I; p) + pfo (p)~(&;p)'

+2pfo(p)~ (~' p)~("' p) (11)

where a prime denotes differentiation with respect to den-
sity. After solving this equation for the weighting func-
tion, Eq. (8) can then be solved self-consistently (both
the left and right sides of the equation depend upon the
weighted density) to determine the weighted density for
a given real density. The self-consistency requirement
assures that the sum rule
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liminary calculations showed that there is little quanti-
tative difference between the freezing results of the two
approximations. One reason for this is that the weight-

ing functions for the two methods are nearly identical in
k space for ko greater than a critical k that is smaller
than the typical first nonzero reciprocal-lattice vector in
a crystal; therefore, as far as the freezing calculations are
concerned, the weighting functions are nearly the same.
The only major difFerence between the two formulations

involves the evaluation of the free energy [Eq. (9) ver-
sus Eq. (13)]. Because of this similarity, the more easily
calculable MWDA results will be taken in this paper as
representative of both theories.

More recently, ii Lutsko and Baus proposed a WDFT
of a different type. This method, the generalized
efFective-liquid approximation, is based on the following
exact expression for the free-energy functional:

1 A

dF,„Q] = —f

draff

drr dA dA p r[&)p(r )rr (rg, rr;[A p]),
0 0

which follows by functionally intergrating tlie definition of the direct-correlation functions [Eq. (5)] with n = 2.
Assuming the correlation functions in an inhomogeneous system are well described by those of a homogeneous one
evaluated at some reference density, Lutsko and Baus approximate Eq. (16) (which is exa«) by

PP', „[p] = —f dr& f drr dA dA p(rt)p(rr)r~ ~([rs —rr ];p[A p]),
0 0

(17)

where c[z&(r; p) is now taken to be the two-body direct-
correlation function for a homogeneous system with den-
sity p. The form of this functional is such that Eq. (5) is
satisfied for all n for all densities —not just in the homo-

geneous limit. A consequence of this is that the sum rules
for higher-order direct-correlation functions [Eq. (12)] are
automatically satisfied.

The functional p[p) is determined by requiring that the
same reference liquid that is used in Eq. (17) to describe
the correlation functions also describes the thermody-
namics; that is,

F-[p] = &fo(p[p]) (18)
Equations (17) and (18), then, uniquely define the den-

sity p for a given p(r). It can be easily seen that this
procedure is equivalent to using Eqs. (13) and (14) to
define the functional, with the weighting function given
by

p I dA J' dA c~z&(( ri —rz ~; p[A p])

Pfo(p)

(19)
Note that this weighting function is normalized only in
the homogeneous limit, which is all that is physically
required.

The modified effective-liquid approximation of Baus
consists of approximating the functional p[Ap] in Eqs.
(17) and (19) by Ap[p]. The MELA is computationally
much simpler than the GELA, but has the disadvantage
that it does not yield the correct ct ~ in the homogeneous
limit. It is interesting to note that the GELA and MELA
can be formulated using a spatially dependent weighted
density as in the WDA; the form of the weighting func-
tion does not change in this case.

One drawback to the above formulation of the WDA
and MWDA is that the existence of a weighting function

is assumed a priori. It is possible, however, to derive both
of these functionals by expanding the exact functional
about a reference liquid and then choosing the reference
density in a particularly optimal fashion. A consequence
of this choice is that the resulting expression for the free
energy of the inhomogeneous phase has the form of a
weighted-density functional.

To derive the Denton-Ashcroft MWDA we start by ex-
pressing the exact functional as a functional integral over
c(i).

where c& 1(ri, rz,' [p]) is the two-particle direct-correlation
functional as defined by Eq. (5) (n = 2) and the integra-
tion path is parametrized as follows:

pi(r) = p+&[p(r) - p]. (22)

Substituting this exact expression for c~ & into the above
expression for PF,„[p] [Eq. (20)] gives

PI". [p] = &Pfo(p)

dr~ dr~ p r~ C rq, r2,. p p r2 —p

1

dF.„[p] = —f dr dXp[r)d'~[r; [Xp]) .
0

This equation is simply the integral form of the definition
of the single-particle direct-correlation function c~ 1 [Eq.
(5) with n = 1]. Similarly, one can expand c~ &(r; [p])
about a homogeneous reference density p:

'"( [p]) = '"(p)
1

+ dr~ d e ry, r2, & p r2 —p,
0
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Since C is, for the most part, unknown, we approxi-
mate it by an as yet unspecified homogeneous two-point
function g:

C(ri, r2; [p]) = g(~ ri —rz ~; p) . (25)

This approximation is due to Groot and van der
Eerden, s who used it in their modification of
the weighted-density-functional theory of Meister and
Kroll 3~

As in the GELA, we choose the reference density so
that both the correlation functions and the free energy
of the solid are described by the same reference liquid;
that is, we require Eq. (13) to be valid. sz This condition
implies that the second term on the right-hand side of
Eq. (23) is zero, which yields

where fo(p) is as defined previously and

1 1

C(ri, r2I[p]) = dAA dA c (ri, r2, [Ap& ]) .
0 0

(24)

The validity of this approximation is discussed in detail
in Ref. 4.

III. RESULTS FOR INVERSE-POWER
POTENTIALS

The inverse-power potential was defined in Eq. (1).
This potential has two properties that make it useful as
a test case for theories of freezing. First, the phase dia-
gram is, for a given value of n, one dimensional. This is
in contrast to the usual two-dimensional nature of phase
diagrams for monatomic systems. This property, which
greatly simplifies the calculations, follows from the fact
that the length and energy scales (0 and e, respectively)
of the potential are not independent. The potential de-
pends on these parameters only through the combination
eo" Thus. , all thermodynamic properties derivable from
the configurational part of the free energy (this includes
the melting and freezing points) are solely determined
by the value of the combination density-temperature pa-
rameter

p = — dri p(ri) drz p(rz)
-=1 g(I » -» I p)

k=0;p (26) v = p~'I
&~J (31)

Finally, the function g is determined from the condi-
tion that the resulting free-energy functional yield the
correct c( l in the homogeneous density limit. Together
with the compressibility equation,

c'"(& = o p) = 2&fo() ) + p&fo (p) (27)

this requirement gives

g() rl r2 ); p) = c ([ri —r~ [;p)+~ = 2 pPfo (p) (28)

A quick inspection shows that this procedure [defined by
Eq. (13), ('26), and (28)] is exactly the MWDA [defined by
Eqs. (13)—(15)] if the correspondence, g/g(k = 0) ~ u),
is made. A similar derivation of the Curtin and Ashcroft
WDA requires only trivial modifications to the above
procedur- —details can be found in Ref. 33.

Unless otherwise stated, all calculations reported in
this paper were performed using a Gaussian parametriza-
tion for the solid single-particle density:

3/2
p(r) = (

—
) ) exp( —a~r —R;P),

~R,}
(29)

where a is a measure of the width of the Gaussian peaks
and (R.;}represents the set of real-space lattice vectors
for the particular solid structure under consideration (for
example, fcc or bcc). This parametrization simplifies the
calculation considerably, because only a one-dimensional
minimization (in n) is required and many parts of the
calculation can be done analytically; for example, the
ideal part of the free energy [Eq. (4)] becomes simply

PF a (a) =
2 ln (

—
) + S ln(A) —-,'.

The second important property of this potential series
is that, by varying the parameter n, one can compare
the freezing properties of systems with widely varying
ranges of interaction. The range of the inverse-power
potential varies from the extremely short-ranged hard-
sphere interaction (n = oo) to the very long-ranged one-
component-plasma potential (n = 1).

One additional advantage of using this potential series
to test the predictions of freezing theories is the fact that
both the phase transition properties and the equations of
state have been studied in detail by computer simulation
for n = oo (HS), 12 'i 9, 6, and 4 These sim-
ulations supply an absolute standard to which a freezing
theory can be compared.

An important result of these simulation studies con-
cerns the equilibrium solid structure at freezing. For n
greater than about 7, the liquid freezes into a fcc crys-
tal sructure. Below this value of n, the bcc structure
becomes the equilibrium freezing solid structure. In the
region where the fcc phase is thermodynamically stable,
the bcc phase is not only thermodynamically unstable,
but is also mechanically unstable to shear. It is interest-
ing to note that, for n ) 5 (integer n), a zero-temperature
lattice sum shows that fcc is the lower energy structure;
therefore, for 5 & n ( 6, the thermodynamic stability of
the bcc phase at temperatures near the melting point is
of entropic origin. Lattice dynamics calculations show
that the lowering of the bcc free energy (relative to fcc)
is due to the existence of low-frequency shear modes.
The correct description of this fcc to bcc transition would
be a significant achievement for any freezing theory.

In this paper we study the freezing properties of this in-
verse power series for n = 12, 6, and 4 using the weighted-
density-functional theories MWDA, GELA, and MELA.
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The input liquid-structure data is calculated using the
modified hypernetted-chain (MHNC) integral-equation
method. For a description of the specific version of
the technique we employ, see the article by Rosenfeld.
The integral equation was solved numerically using the
method of Labik, Malijevsky, and Vonka. This integral-
equation method gives results that are in excellent agree-
ment with computer-simulation data. As an example
of the thermodynamic accuracy, Fig. 1 shows the liq-
uid excess Helmoltz free energy per particle as a function
of bulk number density for the inverse-sixth-power sys-
tem as calculated using the MHNC and by integrating
computer-simulation data. The agreement is excellent.
Figure 2 shows the structure factor, S(k), for the same
system at freezing (ys ——2.18)—also from both MHNC
and computer simulation. Here, as well, the agreement
is good.

Our results for the freezing of inverse-power liquids

(n = 12, 6, and 4) into an fcc solid are summarized in
Table I. For comparison, the results of previous DFT cal-
culations (including those for hard spheres) are also in-
cluded. From this table, one sees that the MWDA does
a better job than the "second-order" theories (HO and
ELA) in predicting the fcc-liquid transition point. As
with the "second-order" results, the predicted values of
the freezing and melting points (calculated by Maxwell
construction from the liquid and solid Helmholtz free-
energy curves) become much worse in comparison to the
simulations as n decreases. However, if one looks at
the relative difference between the total free energies as
predicted by the MWDA and those calculated from the
computer-simulation data, one sees that this quantity ac-
tually decreases slightly as n decreases. The values of the

30
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0
1

FIG. 1. Dimensionless excess Helmholtz free energy per
particle for the inverse-sixth-power fluid as a function of

The solid line was calculated using the MHNC integral-
equation method and the stars represent computer-simulation
data (Ref. 16).
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FIG. 2. Structure factor for an inverse-sixth-power fluid
at the freezing point (ps ——2.18). The solid 1ine is the MHNC
integral-equation result and the stars are Monte-Carlo simu-
lation data (Ref. 18).

MAZDA fcc free energy for n = 6 are compared in Table
II with those of the computer simulations at various val-

ues of the density {the total free energies for the liquid,
both from the MHNC and simulation data are also in-

cluded). The decrease in the accuracy of the transition-
point prediction is due, for the most part, to the fact
that, as n decreases, the angle at which the liquid and
solid free-energy curves meet becomes smaller; therefore,
for the more long-range potentials, a small error in the
solid free-energy curve will lead to a much larger error
in the point at which the two curves cross. The small
crossing angle also accounts for the fact that the frac-
tional density change on freezing b,p/p, decreases with
decreasing n

The MWDA does not do significantly better than the
second-order theories in the determination of the Lin-
demann ratio I, , defined as the ratio of the root-mean-
squared displacement of a particle about its lattice site
to the ideal nearest-neighbor distance. (Note that the
phenomenological Lindemann rule that, for a given sys-
tem, I should remain constant along the liquid-solid co-
existence line, is exactly satisfied for potentials of the
inverse-power type as a consequence of the scaling prop-
erties mentioned above. ) As in the earlier theories, the
predicted Lindemann ratios are about a factor of 2 be-
low the simulation values. This discrepancy is, at least
partially, due to the overestimation of the transition den-
sity, since the width of the solid density peaks decreases
rapidly with increasing solid density.

The MWDA fails to find nontrivial (n g 0) minima in
the bcc solid free energy. This lack of bcc minima per-
sists even when possible anisotropic and anharmonic solid
single-particle densities are taken into account, through
the addition of higher-order cubic harmonics to the argu-
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TABLE I. Comparison of fcc freezing results for inverse-power potentials.

Method

oo (hard spheres) MWDA (Ref. 10)
GELA (Ref. 11)
MELA (Ref. 11)

ELA (Ref. 7)
HO (Refs. 4 and 14)
Simulation (Ref. 34)

0.910
0.945
0.970
0.99
0.967
0.943

1.036
1.041
1.070
1.08
1.147
1.041

0.13
0.10
0.084
0.09
0.18
0.104

0.097
0.095
0.099
0.07
0.06
0.126

MWDA (this work)
GELA (this work)
MELA (this work)

ELA (Ref. 14)
HO (Ref. 14)

Simulation (Ref. 16)

1.194

1.305
1.28
1.15

1.252 0.046
no minima
no minima

1.380 0.06
1.37 0.07
1.19 0.035

0.096

0.07
0.07
0.15

MWDA (this work)
GELA (this work)
MELA (this work)

ELA (Ref. 14)
HO (Ref. 14)

Simulation (Ref. 16)

2.666

3.33
3.43
2.18

2.720 0.020
no minima
no minima

3.39 0.02
3.52 0.026
2.21 0.013

0.074

0.07
0.07
0.17

MWDA (this work)
GELA
MELA

ELA (Ref. 14)
HO (Ref. 14)

Simulation (Ref. 16)

8.176

11.34
12.30
5.54

8.238 0.0075
not attempted
not attempted

11.43 0.007
12.47 0.014
5.57 0.005

0.07

0.07
0.07
0.18

TABLE II. Comparison of Helmholtz-free-energy calculations for the inverse-sixth-power po-
tential: The molecular-dynamics (MD) results are from Ref. 17 and the MWDA and MHNC results
are from the present calculation.

~ "' (MD)N
" (MWDA)N

" (MD)N
~ '" (MHNC)N

1.897

2.055

2.214

2.372

17.058

19.650

22.396

25.302 25.637

16.832

19.510

25.352

16.832

19.496

22.334

25.336

2.530 28.373 28.667 28.501

2.688 31.612 31.835 31.833

2.846 35.023 35.141 35.329
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ment of the exponential in the Gaussian parametrization
[Eq. (29)]. In this respect, the theory fails to correct the
deficencies of the earlier theories based on second-order
truncations.

Despite their excellent predictions for the hard-sphere
freezing transition, the GELA and the MELA both fail
to predict freezing for longer-range potentials (here n
= 6 and 12). For both functionals, no minimum was
found in either the fcc or bcc solid free energies as a
function of a for any value of the solid density. A similar
lack of minima for the MELA was found by Barrat and
co-workers, ~ for the truncated repulsive Lennard-Jones,
the full Lennard-Jones, and the exponential-6 (similar to
Lennard-Jones potential, except with an exponential re-

pulsion) potentials. The reason why these two related
theories (MELA and GELA) should fail so completely
for soft spheres is, at present, unknown.

0.4—

03

0.1

IV. RESULTS FOR YUKAWA POTENTIALS

The Yukawa potential is defined in Eq. (2). This well-

known potential is, among other things, an excellent
model for the repulsive screened Coulombic interaction
present in monodisperse colloidal systems. ~4 The range
of this potential can be tuned by varying the screening
parameter z. Experimental variation of K is achieved
by changing the electrolyte concentration of the fluid in
which the colloidal particles are suspended.

Recently, the phase diagram for this interaction has
been calculated by Robbins, Kremer, and Grest~s us-

ing molecular-dynamics computer-simulation techniques.
Their results are in good agreement with experiments on
colloidal polystyrene spheres (for a description of the ex-
perimental findings, see Ref. 25). Note that the phase
diagram determined by Robbins, Kremer, and Grest
(shown in Fig. 3) is not the usual type in which the
boundary lines denote thermodynamic regions of phase
coexistence. The phase boundaries on their diagram are
the intersection lines of the Helmholtz free-energy sur-
faces of the various phases, taken at a constant density.

The two parameters that describe a point on this phase
diagram are a reduced inverse screening length

%=~a,

and a renormalized reduced temperature

(32)

ae-" ' (33)

where a = p ~ is a typical nearest-neighbor particle
separation and T' = kT/e is the standard reduced tem-
perature. The factor e " renormalizes the temperature
by a typical nearest-neighbor interaction energy.

The form of the Yukawa potential is such that this
Helmholtz free-energy phase diagram only depends on A

and T, and not upon the specific constant value of the
density at which it is constructed. The construction of
the usual type of coexistence diagram would, however,
involve the density as an explicit parameter.

The Yukawa phase diagram (Fig. 3) is divided into

FIG. 3. Phase diagram for the Yukawa Quid. The solid
lines are the phase boundaries as calculated by computer sim-
ulation (Ref. 25). The stars are points on the fcc-liquid phase
boundary as calculated using the MWDA. The dashed lines
are lines of constant a and T' (see text).

three regions. In the upper left part of the diagram (low
A, high T) the fluid is the state with the lowest free en-

ergy. The solid phases (fcc and bcc) occupy the lower
right "triangle" of the diagram, with the bcc phase re-
stricted to the lower left part of this region (small A and
small T) As for .the inverse-power systems, the equi-
librium solid structure along the liquid-solid boundary
changes from fcc to bcc as the effective range of the po-
tential is increased (by decreasing A). At zero tempera-
ture the transition from bcc to fcc occurs at a A of 1.72.
At the freezing point this transition is shifted to about
49

We have performed freezing calculations using the
Denton-Ashcroft MWDA for this potential at Ic = 1.3
and at three different reduced temperatures: T&' ——6.5
x 10, T2 ——1.3 x 10, and T3 ——1.7 x 10 . These
values of the parameters were chosen so that both the fcc
(T&' and Tz) and bcc (Ts) regions of the phase diagram
are covered by the calculation. The liquid structure and
free-energy input data were obtained using the same pro-
ceedure as described in Sec. III for inverse-power poten-
tials. Given their failure for the inverse-power potentials
and the amount of eA'ort required in their implementa-
tion, Yukawa freezing calculations using the MELA and
the GELA methods were not attempted.

Our results for the fcc-liquid coexistence densities as
well as the fractional density change and Lindemann ra-
tio are given in Table III for the three temperatures stud-
ied. The corresponding values of A and T are also given.
As for the inverse-power system, no bcc-liquid transition
was found, even for T3, where both the experiments and
computer simulation indicate that bcc should be more
stable than fcc. For Ts, a metastable bcc phase was
found, but the Helmholtz free energy of this phase does
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TABLE III. MWDA fluid-solid (fcc) coexistence results
for the Yukawa potential with r. = 1.3.

TABLE IV. Crossing densities of the Yukawa liquid and
fcc solid free-energy curves with ~ = 1.3.

Tg
6.5 x 10

T'
1.3 x 10

T3'

1.7 x 10
Method pc Tc

pt

ps

0.007 95

0.008 12

0.021

0.09

0.012 32

0.012 73

0.032

0.079

0 ~ 1456

0 ~ 1459

0.002

0.070

6.5 x10

1.3 x10

1.7x10

MAZDA

MD

MWDA
MD

MVVDA

MD(bcc)

0.007 98
0.006 86

0.0124
0.009 82

0.1458
0.0703

6.50
6.84

5.61
6.07

2.470
3.15

0.217
0.317

0.154
0.264

0.038 18
0.097

6.514 5.629 2.471

6.468 5.568 2.469

0.220

0.208

0 ~ 157

0 ~ 146

0.038 24

0.038 14

not cross either the liquid or fcc free-energy curve for any
reasonable density (see Fig. 4)

Because the results in Table III are for liquid-fcc coesis-
'ence, they cannot be directly compared to the computer-
simulation phase diagram (Fig. 3). In order to make
this comparison, we have also calculated, for these three
temperatures, the densities p, at which the fcc and Quid
Helmholtz-free-energy curves cross. These densities, as
well as the corresponding A, and T„are given in Table IV
(along with the simulation values). They are also plotted

0.8
bcc

Q 0.6

4„0 4
I

0.2

0—

I I

0.11 0.12
I

0.13
p

0.14
I

0.15

FIG. 4. The dimensionless Helmholtz free energy (relative
to the fluid) for fcc and bcc solid structures for a Yukavra fluid
with r = 1.3 and T' = l.7 x 10

as stars on the phase diagram (Fig. 3). (The dashed lines
on the phase diagram represent curves of constant K and
T'—the downward direction on these curves represents
increasing density. ) From Fig. 3, we see that for a given A

the value of T at which the fcc and fluid free energies are
equal is consistently underestimated for all three values
of T'. From this we can conclude that, for fixed ~ and
T', the melting and freezing densities are overestimated,
as in the inverse-power system. Along the liquid-solid
line of the phase diagram, the simulations obtain a Lin-
demann ratio of about 19%. From the values of L given
in Table III, we see that, as for the inverse powers, this
quantity is about a factor of 2 too small for the MWDA.

V. DISCUSSION AND CONCLUSIONS

We have studied the freezing properties of two types
of repulsive soft-sphere interactions, inverse-power and
Yukawa, using several recently developed weighted-
density-functional theories. For the freezing of these sys-
tems into a fcc solid structure, we find that the modified
weighted-density approximation of Denton and Ashcroft
overestimates the coexistence densities and that the error
increases with the range of the potential. This overesti-
mation is, however, significantly less than that of earlier
density-functional theories and is primarily due to the
fact that the slopes of the liquid and solid free-energy
curves are very similar at freezing, which makes the cal-
culated crossing point very sensitive to any error in the
free energies. In fact, the calculated fcc free energies for
these softer potentials is shown to have about the same
relative error as those for hard spheres, even though the
hard-sphere transition is predicted with much greater ac-
curacy. No improvement was seen over the earlier theo-
ries in the prediction of the Lindemann ratio.

The MWDA fails to predict any fluid to bcc solid tran-
sitions, even under conditions at which computer simu-
lations find a thermodynamically stable bcc phase. A
metastable bcc phase was found for one of the Yukawa
potential calculations, but the free energy was such that
it would never (for a reasonable density) be more stable
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than either the liquid or the bcc phase.
For the generalized effective-liquid approximation of

Baus and Lutsko and the modified efI'ective-liquid ap-
proximation of Baus, no stable or metastable solid phases
(fcc or bcc) were found (at least for the inverse-power po-
tentials). Similar failure of the MELA for the Lennard-
Jones (both full and truncated) potential has also been
recently reported. ~ The complete failure of these meth-
ods is suprising in view of the excellent results they yield
for the hard-sphere transition.

Although the MWDA (and therefore the more com-
plicated WDA of Curtin and Ashcroft) gives results for
these potentials that are quantitatively better than those
of the earlier theories based on a second-order trunca-
tion of the functional, the qualitative picture has not
changed. The failure to correctly predict freezing into
non-close-packed solids remains a major problem with
density-functional freezing theories.

Weighted-density-functional theories (of all types) do
very well at predicting the hard-sphere freezing tran-
sition, even giving a reasonable "metastable" bcc free
energy. Why do these methods (especially MELA and
GELA) become so much worse as the range of the inter-
action potential is increased'? One possible answer is that

the range of the correlations is incorrectly described.
The standard explanation as to why the correlation

functions of a solid should be well described by those of
a reference liquid with a lower bulk density is that the
solid correlations, as a consequence of localization, are
weaker than those of a liquid at the same density. The
weighted-density formalism, it is then speculated, pro-
vides a good way of determining this "optimum" lower
reference density. The problem is that the range of the
correlation functions in a liquid is, in general, a relatively
strong function of density. Thus it is not necessarily true
that the same liquid that gives a good description of the
amplitude of the solid correlations simultaneously gives
a good estimate of their range —except, perhaps, in the
case of hard spheres where the range of the liquid corre-
lations is only very weakly density dependent.
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