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Comparison of weighted-density-functional theories for inhomogeneous liquids
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Three recent weighted-density-functional (WDF) theories are critically examined in terms of their
ability to describe correctly the structure of a hard-sphere fluid at a hard wall. A new derivation of
the Curtin-Ashcroft WDF theory is given that clarifies the basic approximations behind this formu-
lation and brings out the close relationship between their work and the WDF theories of Meister-
Kroll and Groot-van der Eerden. The condition that the second functional derivative of the ap-
proximate Helmholtz free-energy functional yields the correct two-particle direct-correlation func-
tion in the homogeneous limit is found to be of crucial importance in determining good liquid struc-

tures.

I. INTRODUCTION

One of the most demanding tests of theories of inho-
mogeneous fluids, i.e., fluids whose density varies
significantly over molecular dimensions, is the prediction
of the fluid structure near solid surfaces. Particular prob-
lems arise due to the necessity of correctly describing
multiphase coexistence, while simultaneously incorporat-
ing a sufficiently detailed treatment of the rapid variation
of the density profiles that can arise in interfacial regions.

Density-functional methods have proven to be one of
the most successful approaches for studying both the
structure of inhomogeneous classical liquids and freezing.
Most of these theories use rather similar physical con-
cepts. For most simple liquids, it is generally assumed
that the intermolecular interaction can be divided into a
short-range repulsive part u,(r), which determines the
structure of the liquid, and a long-range attractive tail
u,(r).! For most applications it is sufficient to treat u,(r)
in the mean-field approximation. The real test of the
various density-functional theories therefore lies in their
ability to reproduce the short-range structure induced by
u,(r). The standard test case is the structure of a hard-
sphere liquid at a hard wall. In this paper we compare
the quality of the density profiles predicted for this case
by three recent weighted-density-functional theories.? *
These theories (described in Sec. II) are among the most
sophisticated currently available so that our results give
some indication of the accuracy that is currently attain-
able. More important, the comparison yields valuable in-
formation regarding the quality of the various approxi-
mations that have gone into the formulation of these
theories and should be of use in future attempts to devel-
op improved approximations.

II. WEIGHTED-DENSITY FUNCTIONALS

The basic assumption of all density-functional theories
is that the thermodynamic potential of an inhomogene-
ous system can be approximated using known structural
and thermodynamic properties of the corresponding
homogeneous fluid. The most successful density func-
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tionals are based on the so-called weighted-density ap-
proximation (WDA). In this approach, an approximate
free-energy functional is constructed in such a way that
the free-energy density of an inhomogeneous liquid at a
given point is interpreted as that of a homogeneous sys-
tem taken at an auxiliary local average (coarse-grained)
density.

Several early attempts to implement this idea were
rather successful.’ ' In particular, these schemes suc-
ceeded in locating a first-order freezing transition”® for
simple liquids in qualitative agreement with simulation
studies and gave reasonably good results for the structure
of a liquid in contact with a wall.>®%!° However, these
theories were of a rather ad hoc nature in that they did
not result from well-defined approximations on the exact
functional.

Subsequent developments can be summarized as fol-
lows: The Helmholtz free energy #[p], which is a unique
functional of the one-particle density p(r), has the form

Hlpl=Falpl+Falp] (D
where

Fulp1=B"" [drp(r){In[A®p(r)]—1} )
is the ideal-gas contribution and

7. [(pl= —ﬁ"fdrp(r)fo‘dxc“‘(r;[xp]) , 3)
where B lc'M(r;[p])=—58F.,/8p(r). Expanding

¢'V(r;[p)) about a homogeneous liquid with the coarse-
grained density py(r), one has

7 1 7 ’ ’
cMr;[ph=cMpo(rN+ [dr fodxc‘z’u,r;[px D
X[P(r')_Po(r)] >

where ¢?(r,r';[p]) is the two-particle direct-correlation
functional of the inhomogeneous liquid, ¢'(py(r)) is the
one-particle direct-correlation function of a homogeneous
liquid at  density po(r), and  p(r')=py(r)
+MA[p(r')—py(r)]. Finally, substituting this result in (3)
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yields
Folpl= [ drp(t)folpoe)—B"
X fdrfdr'p(r)@(r,r';[P])[p(r’)—po(r)] ,
4)

where f(p,) is the excess Helmholtz free energy per par-
ticle of the homogeneous liquid at density p, and

@(r,r’;[p])=foldkk fotdl’cm(r,r';[kpx]). (5)

This expression for F.,[p] is exact. Because little is
known about the functional ¢'¥(r,r’;[p]) for inhomo-
geneous systems, practical applications involve utilizing
knowledge of the properties of the homogeneous system.
Since no detailed information exists for the three-particle
and higher direct-correlation functions, even for homo-
geneous systems, the approach followed by Meister and
Kroll (MK) in Ref. 2 was to expand the right-hand side
of (5) and truncate after the bulk ¢?’ term. As a result,
one obtains

C(r,r';[p]) = 9(|r—r'[;po(r))
:folkdkcm(|r—r'1;kp0(r)) : (6)

The terms neglected in (6) are proportional to A integrals
of higher-order direct-correlation functions. In the ap-
proach of MK, the coarse-graining procedure is then
defined by extremizing the resulting expression for
Fexlp>pol with respect to po(r), the motivation being to
minimize the dependence of F,, on p,. As a result, one
finds that

po(r)=fdr'w(|r——r’1;p0(r))p(r’) , (7

where  the  weight  function  w(|r—r'|;p(1))
=9"(Ir—r'l;p0(1)) /Gg(po(r)), With §'(r;p)=03%/3p and
Golp)= [dx8'(r,p).

An attractive feature of this approach is that the
coarse-graining procedure follows quite naturally from
the requirement that 8%, /8py(r)=0. Unfortunately, al-
though this approximation is consistent with the
compressibility equation of state and various sum rules, it
does not satisfy the relation
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—_— — 2ot
BSp(r)Sp(r’) pler=p ¢ (fr=r'l;p) (8)

in the homogeneous bulk phase.

Subsequently, Groot and van der Eerden® (GE) extend-
ed this model to incorporate condition (8). They start by
approximating C(r,r’;[p]) in (5) by an effective two-point
function of a homogeneous liquid at the local density
po( r),

C(r,t;[p]) = 9(r—r'|;po(1)) . 9

The condition 8F,,/8py(r)=0, applied in the homogene-
ous state p(r)=py(r)=p, implies then that
Golp)=—PBfo(p), a relation that is equivalent to the
compressibility equation of state. Utilizing this result
and demanding that (8) be satisfied in the homogeneous
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limit leads to the requirement that the Fourier transform
of 9(r;p), 9, (p), be determined as the solution of

e (p)=29,(p)+—L—[9(p)]* . (10)
Golp)

Taking the density derivative of (10) implies that
the Fourier transform of the weight function
w; (p)=9(p)/94(p) solves

—/3‘“[CLZ’(p)]’=2f6'(p)wk(p)+d%[pfé'(mw;f(p)] :

(11)

A closely related approach has been pursued by Curtin
and Ashcroft* (CA). What they do amounts to demand-
ing that the second term on the right-hand side of (4) van-
ishes, so that

Fexlprpo)= [ drp(r)fo(po(r)) . (12)

In other words, py(r) is determined from the requirement
that the excess free-energy density be local in p(r) and
po(r). Assuming (9), this implies that py(r) is given by (7),
with w(|r—r'[;p0(r))=9(Ir—1'[;p0(r)) /SG(po(r)). & is
then determined by requiring that (8) be satisfied in the
bulk homogeneous phase. The defining equation for
wy (p) is easily found to be

—/3"‘c}f’(p)=2f{)(p)wk(p)+p%[f’o(p)wk2(p)] .o (13)

Since by definition, w; ~o(p)=1, (13) is consistent with
the compressibility equation of state. Note the formal
similarity between Egs. (11) and (13).

ITII. RESULTS AND DISCUSSION

The equilibrium density distribution is that which min-
imizes the grand potential

Q=Fpl+ [dr[V(r)—u],

where V(r) is an external potential and u is the chemical
potential of the fluid. In the following we consider a sys-
tem of hard spheres of diameter o in contact with a hard
wall described by the potential

o forz<—o/2

V —
D=0 forz>—02.

All calculations are carried out using the Percus-Yevick
compressibility equation of state and direct-correlation
function ¢‘?.!! In order to compare with existing simula-
tion data,'? profiles were calculated using the approxi-
mate Helmholtz free-energy functionals F[p] discussed in
Sec. II for the bulk densities pgo®=0.575, 0.813, and
0.9135. The results are shown in Figs. 1-3. The dashed
lines are the predictions of the original MK theory;2 the
results obtained using the GE (Ref. 3) and CA (Ref. 4) ap-
proximations are given by the solid lines. The difference
between the predictions of these last two theories is too
small to be resolved in the figures.

The essential features of these results can be summa-
rized as follows.
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(i) Since the surface sum rule Bp =p(07) is satisfied in
all three approximations, they all yield a density at the
wall which is consistent with the compressibility equation
of state.

(ii) The “renormalized” theory of GE represents a sub-
stantial improvement over that of MK, implying that the
requirement that the theory yields the correct ¢'®(r) in
the homogeneous bulk phase is of critical importance. In
fact, the surprisingly close agreement between the predic-
tions of the GE and CA WDA'’s indicates that this condi-
tion is the most important single element in determining
the quality of the density profiles and, in particular, the
phase of the density oscillations far from the wall.

Recently, Sokolowsky and Fischer!? have extended the
approach of Ref. 2 to include three-particle direct corre-
lations. This corresponds to going one order further in
the expansion of (5) so that (6) is supplemented by the
term

%fdr”folkzdkc(3)(r,r’,r";kpo(r))[p(r")—po(r)] .

To determine the three-particle direct-correlation func-
tion of the homogeneous fluid, they used the scheme re-
cently suggested by Barrat, Hansen, and Pastore. '*

The fact that this expansion is taken one order further
than in Ref. 2 guarantees that (8) is satisfied in the homo-
geneous limit. However, an inconsistency appears at the
next order, since the third functional derivative of &,
does not yield the correct three-point function. Never-
theless, their density profiles for a hard-sphere system at
a hard wall represent a significant improvement over
those of MK. In particular, the inclusion of the third-
order term raises the maximum of the second peak and
shifts it to somewhat smaller z values; furthermore, the
quality of the profiles near the first minimum also seems
to improve. In spite of these improvements, the profiles
predicted by the GE and CA WDA’s discussed here are
superior, particularly at higher densities and for z /o > 1.

o
(%)
T

1 1

005 10 15 20 25 30

1 1 L

z/ag

FIG. 1. Density profiles of a hard-sphere fluid at bulk density
po>=0.575 in contact with a hard wall. The dashed line is the
prediction of the original Meister-Kroll theory (Ref. 2). The re-
sults obtained using the “renormalized” Groot—van der Eerden
(Ref. 3) and Curtin-Ashcroft (Ref. 4) approximations are given
by the solid line; the difference between the predictions of these
two theories cannot be resolved in the figure. The points (@)
are Monte Carlo simulation results (Ref. 12).
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FIG. 2. Density profiles of a hard-sphere fluid at bulk density
p3o’=0.813 in contact with a hard wall. The notation is the
same as in Fig. 1.

A major shortcoming of the weighted-density-
functional theories of Refs. 3 and 4 is the relatively large
amount of computational effort which is required. This
feature does, in fact, restrict their usefulness. On the oth-
er hand, if one takes the weighted density to be indepen-
dent of the spatial coordinate, these two approximations
simplify considerably. Very recently, Denton and Ash-
croft'’® have implemented this approach in the original
CA WDA. The resulting theory retains many of the
good features of the original weighted-density functional,
but requires significantly less computational effort. In
particularly, Denton and Ashcroft!® have shown that this
simpler theory is about as accurate as the original CA
WDA when applied to study the hard-sphere freezing
transition.

It is straightforward to apply this same idea in the GE
approximation. For fluids adsorbed at walls, it turns out
that the resulting theory, as well as that of Denton and
Ashcroft, are equivalent to the hypernetted-chain closure
of the wall-particle Ornstein-Zernike equation.'® It is
known that this closure yields density profiles that are in
fairly good agreement with simulation data, provided
ppo 50,4, For higher densities this approximation
overestimates the amplitude of the first few oscillations in
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FIG. 3. Density profiles of a hard-sphere fluid at bulk density
pro*=0.9135 in contact with a hard wall. The notation is the
same as in Fig. 1.
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p(z). Worse, the density at the wall no longer satisfies the
surface sum rule Bp =p( 0%) and, since the theory cannot
describe two-phase (liquid-gas) coexistence, this approxi-
mation cannot describe wetting phenomena. It should be
emphasized that these problems are not shared by the
present set of theories which utilize spatially dependent
weighted densities.

In closing, we have shown that the weighted-density-
functional theories developed in Refs. 3 and 4 are of com-
parable accuracy when it comes to describing the struc-
ture of an inhomogeneous hard-sphere liquid. We expect
that this is also the case for fluids with other pair-
interaction potentials. The essential ingredient which
both theories incorporate is the requirement that Eq. (8)
be fulfilled in the homogeneous limit.

From this result, one might expect that both approxi-
mations are also of comparable accuracy when applied to
study freezing of the hard-sphere liquid. This, however,
is not the case. In particular, we have found that if the
theory of Ref. 3 is reformulated for a spatially indepen-
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dent weighted density (as in the Denton-Ashcroft approx-
imation), the equation for the weighted density [corre-
sponding to Eq. (7)] has, in general, no solution in the
solid phase;!” in contrast, the Denton-Ashcroft theory is
known to yield rather good values for the hard-sphere
freezing parameters. The reason for this problem can be
traced to the position and density dependence of the first
zero of the weight function w,(p). At present, we do not
have a deeper understanding of why this theory, which
does so well at describing liquid structure, fails so badly
when applied to study freezing. In any case, approxima-
tions based on the ideas leading to approximation (12) ap-
pears to be superior in this respect.
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