66 research outputs found

    Irish cardiac society - Proceedings of annual general meeting held 20th & 21st November 1992 in Dublin Castle

    Get PDF

    Scalable Open Science Approach for Mutation Calling of Tumor Exomes Using Multiple Genomic Pipelines

    Get PDF
    The Cancer Genome Atlas (TCGA) cancer genomics dataset includes over 10,000 tumor-normal exome pairs across 33 different cancer types, in total >400 TB of raw data files requiring analysis. Here we describe the Multi-Center Mutation Calling in Multiple Cancers project, our effort to generate a comprehensive encyclopedia of somatic mutation calls for the TCGA data to enable robust cross-tumor-type analyses. Our approach accounts for variance and batch effects introduced by the rapid advancement of DNA extraction, hybridization-capture, sequencing, and analysis methods over time. We present best practices for applying an ensemble of seven mutation-calling algorithms with scoring and artifact filtering. The dataset created by this analysis includes 3.5 million somatic variants and forms the basis for PanCan Atlas papers. The results have been made available to the research community along with the methods used to generate them. This project is the result of collaboration from a number of institutes and demonstrates how team science drives extremely large genomics projects

    Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images

    Get PDF
    Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumor-infiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL maps are derived through computational staining using a convolutional neural network trained to classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and correlation with overall survival. TIL map structural patterns were grouped using standard histopathological parameters. These patterns are enriched in particular T cell subpopulations derived from molecular measures. TIL densities and spatial structure were differentially enriched among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for the TCGA image archives with insights into the tumor-immune microenvironment. Tumor-infiltrating lymphocytes (TILs) were identified from standard pathology cancer images by a deep-learning-derived \u201ccomputational stain\u201d developed by Saltz et al. They processed 5,202 digital images from 13 cancer types. Resulting TIL maps were correlated with TCGA molecular data, relating TIL content to survival, tumor subtypes, and immune profiles

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Bidomains and full abstraction for countable non-determinism

    No full text
    Abstract. We describe a denotational semantics for a sequential functional language with random number generation over a countably infinite set (the natural numbers), and prove that it is fully abstract with respect to may-and-must testing. Our model is based on biordered sets similar to Berry’s bidomains, and stable, monotone functions. However, (as in prior models of unbounded non-determinism) these functions may not be continuous. Working in a biordered setting allows us to exploit the different properties of both extensional and stable orders to construct a Cartesian closed category of sequential, discontinuous functions, with least and greatest fixpoints having strong enough properties to prove computational adequacy. We establish full abstraction of the semantics by showing that it contains a simple, first-order “universal type-object ” within which all types may be embedded using functions defined by (countable) ordinal induction.

    Water depth is a strong driver of intra-lake diatom distributions in a small boreal lake

    No full text
    There has been much debate over the relative importance of environmental selection and spatial variation on community organization in microorganisms. To assess the importance of environmental or spatial variables in diatom species assemblages in Gall Lake, northwest Ontario, 41 surface-sediment samples were collected in a two-dimensional gridded pattern along and across depth contours. A depth-constrained cluster analysis separated the diatom flora into three communities: a shallow-water benthic zone (B1); a deeper-water benthic zone (B2); and a planktonic zone (P). Redundancy analysis (RDA) confirmed that water depth was a major predictor of variation in the flora. Further RDAs and variation partitioning using orthogonal polynomials and Moran’s eigenvector maps showed that spatial location had minimal effect on the diatom assemblages. Principal components analysis grouped the diatom flora not only by assemblage, but also by water depth, regardless of two-dimensional spatial separation, suggesting the importance of the environmental gradients associated with lake depth. These findings indicate that environment is a more important explanatory variable than spatial variables for diatoms within lakes, suggesting dispersal plays a limited role in intra-lake diatom distributions
    corecore