168 research outputs found

    Persistence of soil organic matter and soil structure

    Full text link

    Identification of a novel herpesvirus associated with a penile proliferative lesion in a beluga (Delphinapterus leucas)

    Full text link
    The carcass of an adult male beluga (Delphinapterus leucas) was found beach cast in 2008 on the shore of the St. Lawrence Estuary at Rivière-Ouelle, Quebec, Canada. The carcass was transported to the Faculté de médecine vétérinaire of the Université de Montréal for postmortem examination. Aspiration pneumonia was the probable cause of death. Necropsy revealed a focal papilloma-like penile lesion, characterized by focal mucosal thickening with disorganization of the epithelial layers and lymphoplasmacytic infiltration. A pan-herpesvirus nested PCR assay on frozen tissue from the penile lesion was positive. The PCR product sequencing revealed a partial herpesvirus DNA polymerase (DPOL) gene sequence of 600 nucleotides. Its nearest nucleotide identity was with the partial DPOL gene of an alphaherpesvirus, bovine herpesvirus 5 (79.5% identity). It also shared high identity with several other marine mammal herpesviruses (50.2 to 77.3% identity). This new herpesvirus was tentatively named beluga whale herpesvirus (BWHV). Virus isolation was unsuccessful. The pathogenic potential of BWHV is unknown, but the evaluation of archived tissues suggests that the virus is endemic in the St. Lawrence Estuary beluga population

    Analysing the impact of compaction of soil aggregates using X-ray microtomography and water flow simulations

    Get PDF
    Soil aggregates are structural units of soil, which create complex pore systems controlling gas and water storage and fluxes in soil. Aggregates can be destroyed during swelling and shrinking or by external forces like mechanical compaction and yet, the knowledge of how physical impact alters aggregate structure remains limited. The aim of the study was to quantify the impact of compaction on macroaggregates, mainly on the pore size distribution and water flow. In this study, aggregates (2–5 mm) were collected by dry sieving in grassland of the Fuchsenbigl–Marchfeld Critical Zone Observatory (Austria). The structural alterations of these soil aggregates under controlled compaction were investigated with a non-invasive 3D X-ray microtomography (XMT). The detailed changes in pore size distribution between aggregates (interpores, diameter >90 μm) and within the aggregates (intrapores, diameter ≤90 μm) in pre- and post-compacted soils were revealed at two soil moisture (9.3% and 18.3% w/w) and two bulk density increments (0.28 and 0.71 g cm−3 from the initial values). The soil permeability was simulated using lattice Boltzmann method (LBM) based on 3D images. Soil compaction significantly reduced total pores volume and the proportion of interpores volume and surface area, while total pore surface area and the proportion of intrapores volume and surface area increased. The increases in soil moisture tended to reduce the effects of compaction on interpores and intrapores, while the high compaction increment drastically changed the pore size distribution. The aggregate compaction decreased water penetration potential due to the increase of small intra-aggregate pores and cavities as demonstrated by LBM. Notably, the LBM results showed a significant linear correlation between the water flow rate and bulk density of soil aggregates and predicted that the water flow could be reduced by up to 97–99% at bulk density of ≥1.6 g cm−3 with soil water content of 18.3% w/w. Thus, a combination of imaging and modelling provided new insights on the compaction effects on aggregates, underpinning the importance of protecting soil structure from mechanical compaction to minimise environmental impacts of soil compaction and maintain water infiltration and percolation in arable soils

    Effective stress analysis and set-up for shaft capacity of piles in clay

    Get PDF
    ABSTRACT A case history of repeated dynamic and static loading tests in Alberta on two pipe piles during dissipation of driving-induced pore pressures is presented together with three reanalyzed published case histories involving similar records. The four case histories demonstrate that, for each case, the same effective-stress proportionality coefficients, beta-coefficients, fit the capacities at different degrees of dissipation of excess pore pressures. For two of the test sites, the beta-coefficients back-calculated from the tests differed considerable from the values determined from the soil plasticity relation, while for two, the agreement is good. For one case, the backcalculated shaft resistance agreed well with the values of vane shear strength, while a less good agreement was found for the other tests. Neither case showed good agreement was found for methods combining undrained shear strength and effective overburden stress. Capacity calculations for two cases employing methods based on CPT soundings gave excellent agreement with one test and a poor agreement with the other. The increase of capacity due to aging after dissipation of excess pore pressures did not agree with cited recommendation for calculations of aging effect

    Designing all-graphene nanojunctions by covalent functionalization

    Full text link
    We investigated theoretically the effect of covalent edge functionalization, with organic functional groups, on the electronic properties of graphene nanostructures and nano-junctions. Our analysis shows that functionalization can be designed to tune electron affinities and ionization potentials of graphene flakes, and to control the energy alignment of frontier orbitals in nanometer-wide graphene junctions. The stability of the proposed mechanism is discussed with respect to the functional groups, their number as well as the width of graphene nanostructures. The results of our work indicate that different level alignments can be obtained and engineered in order to realize stable all-graphene nanodevices

    An algorithm to identify patients with treated type 2 diabetes using medico-administrative data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>National authorities have to follow the evolution of diabetes to implement public health policies. An algorithm was developed to identify patients with treated type 2 diabetes and estimate its annual prevalence in Luxembourg using health insurance claims when no diagnosis code is available.</p> <p>Methods</p> <p>The DIABECOLUX algorithm was based on patients' age as well as type and number of hypoglycemic agents reimbursed between 1995 and 2006. Algorithm validation was performed using the results of a national study based on medical data. Sensitivity, specificity and predictive values were estimated.</p> <p>Results</p> <p>The sensitivity of the DIABECOLUX algorithm was found superior to 98.2%. Between 2000 and 2006, 22,178 patients were treated for diabetes in Luxembourg, among whom 21,068 for type 2 diabetes (95%). The prevalence was estimated at 3.79% in 2006 and followed an increasing linear trend during the period. In 2005, the prevalence was low for young age classes and increased rapidly from 40 to 70 for male and 80 for female, reaching a peak of, respectively 17.0% and 14.3% before decreasing.</p> <p>Conclusions</p> <p>The DIABECOLUX algorithm is relevant to identify treated type 2 diabetes patients. It is reproducible and should be transferable to every country using medico-administrative databases not including diagnosis codes. Although undiagnosed patients and others with lifestyle recommendations only were not considered in this study, this algorithm is a cheap and easy-to-use tool to inform health authorities. Further studies will use this tool with the aim of improving the quality of health care dedicated to diabetic patients in Luxembourg.</p
    • …
    corecore