29 research outputs found

    Assessment of the biomechanical properties of the cornea with the ocular response analyzer in normal and keratoconic eyes

    Get PDF
    PURPOSE. To compare hysteresis, a novel measure of ocular rigidity (viscoelasticity) in normal and keratoconic eyes. METHODS. The study consisted of 207 normal and 93 keratoconic eyes. Eyes were diagnosed as keratoconic based on clinical examination and corneal topography. The hysteresis was measured by the Ocular Response Analyzer (ORA; Reichert Ophthalmic Instruments, Buffalo, NY). The data were recorded by Generation 3 software for the ORA. Central corneal thickness (CCT) was measured with a handheld ultrasonic pachymeter in the midpupillary axis. RESULTS. The mean hysteresis was 10.7 ± 2.0 (SD) mm Hg (range, 6.1-17.6) in normal eyes compared with 9.6 ± 2.2 mm Hg (range, 4.7-16.7) in keratoconic eyes. The difference was statistically significant (P < 0.0001, unpaired t-test). Mean CCT in the normal and keratoconic eyes was 545.0 ± 36.4 μm (range, 471-650) and 491.8 ± 54.7 μm (range, 341-611), respectively; the difference was significant (P < 0.0001, unpaired t-test). CONCLUSIONS. Hysteresis was significantly higher in normal than in keratoconic eyes. It may be a useful measurement in addition to CCT, when assessing ocular rigidity, and may be of particular importance when trying to correct intraocular measurements for increased or decreased ocular rigidity. Long-term studies of change in hysteresis may provide information on the progression of keratoconus

    Accuracy of Goldmann, ocular response analyser, Pascal and TonoPen XL tonometry in keratoconic and normal eyes

    Get PDF
    Aim: The aim of this study was to evaluate the practicality and accuracy of tonometers used in routine clinical practice for established keratoconus (KC). Methods: This was a prospective study of 118 normal and 76 keratoconic eyes where intraocular pressure (IOP) was measured in random order using the Goldman applanation tonometer (GAT), Pascal dynamic contour tonometer (DCT), Reichert ocular response analyser (ORA) and TonoPen XL tonometer. Corneal hysteresis (CH) and corneal resistance factor (CRF), as calculated by the ORA, were recorded. Central corneal thickness (CCT) was measured using an ultrasound pachymeter. Results: The difference in IOP values between instruments was highly significant in both study groups (p&lt;0.001). All other IOP measures were significantly higher than those for GAT, except for the Goldmann-correlated IOP (average of the two applanation pressure points) (IOPg) as measured by ORA in the control group and the CH-corrected IOP (corneal-compensated IOP value) (IOPcc) measures in the KC group. CCT, CH and CRF were significantly less in the KC group (p&lt;0.001). Apart from the DCT, all techniques tended to measure IOP higher in eyes with thicker corneas. Conclusion: The DCT and the ORA are currently the most appropriate tonometers to use in KC for the measurement of IOPcc. Corneal factors such as CH and CRT may be of more importance than CCT in causing inaccuracies in applanation tonometry techniques
    corecore