33 research outputs found

    Remote and long-term self-monitoring of electroencephalographic and noninvasive measurable variables at home in patients with epilepsy (EEG@HOME) : protocol for an observational study

    Get PDF
    ©Andrea Biondi, Petroula Laiou, Elisa Bruno, Pedro F Viana, Martijn Schreuder, William Hart, Ewan Nurse, Deb K Pal, Mark P Richardson. Originally published in JMIR Research Protocols (http://www.researchprotocols.org), 19.03.2021. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Research Protocols, is properly cited. The complete bibliographic information, a link to the original publication on http://www.researchprotocols.org, as well as this copyright and license information must be included.Background: Epileptic seizures are spontaneous events that severely affect the lives of patients due to their recurrence and unpredictability. The integration of new wearable and mobile technologies to collect electroencephalographic (EEG) and extracerebral signals in a portable system might be the solution to prospectively identify times of seizure occurrence or propensity. The performances of several seizure detection devices have been assessed by validated studies, and patient perspectives on wearables have been explored to better match their needs. Despite this, there is a major gap in the literature on long-term, real-life acceptability and performance of mobile technology essential to managing chronic disorders such as epilepsy. Objective: EEG@HOME is an observational, nonrandomized, noninterventional study that aims to develop a new feasible procedure that allows people with epilepsy to independently, continuously, and safely acquire noninvasive variables at home. The data collected will be analyzed to develop a general model to predict periods of increased seizure risk. Methods: A total of 12 adults with a diagnosis of pharmaco-resistant epilepsy and at least 20 seizures per year will be recruited at King's College Hospital, London. Participants will be asked to self-apply an easy and portable EEG recording system (ANT Neuro) to record scalp EEG at home twice daily. From each serial EEG recording, brain network ictogenicity (BNI), a new biomarker of the propensity of the brain to develop seizures, will be extracted. A noninvasive wrist-worn device (Fitbit Charge 3; Fitbit Inc) will be used to collect non-EEG biosignals (heart rate, sleep quality index, and steps), and a smartphone app (Seer app; Seer Medical) will be used to collect data related to seizure occurrence, medication taken, sleep quality, stress, and mood. All data will be collected continuously for 6 months. Standardized questionnaires (the Post-Study System Usability Questionnaire and System Usability Scale) will be completed to assess the acceptability and feasibility of the procedure. BNI, continuous wrist-worn sensor biosignals, and electronic survey data will be correlated with seizure occurrence as reported in the diary to investigate their potential values as biomarkers of seizure risk. Results: The EEG@HOME project received funding from Epilepsy Research UK in 2018 and was approved by the Bromley Research Ethics Committee in March 2020. The first participants were enrolled in October 2020, and we expect to publish the first results by the end of 2022. Conclusions: With the EEG@HOME study, we aim to take advantage of new advances in remote monitoring technology, including self-applied EEG, to investigate the feasibility of long-term disease self-monitoring. Further, we hope our study will bring new insights into noninvasively collected personalized risk factors of seizure occurrence and seizure propensity that may help to mitigate one of the most difficult aspects of refractory epilepsy: the unpredictability of seizure occurrenceThis study is funded by Epilepsy Research UK (award 1803). MPR, PFV, and EN are supported by the Epilepsy Foundation of America’s Epilepsy Innovation Institute My Seizure Gauge grant.info:eu-repo/semantics/publishedVersio

    Heterogeneity of resting-state EEG features in juvenile myoclonic epilepsy and controls

    Get PDF
    Abnormal EEG features are a hallmark of epilepsy, and abnormal frequency and network features are apparent in EEGs from people with idiopathic generalized epilepsy in both ictal and interictal states. Here, we characterize differences in the resting-state EEG of individuals with juvenile myoclonic epilepsy and assess factors influencing the heterogeneity of EEG features. We collected EEG data from 147 participants with juvenile myoclonic epilepsy through the Biology of Juvenile Myoclonic Epilepsy study. Ninety-five control EEGs were acquired from two independent studies [Chowdhury et al. (2014) and EU-AIMS Longitudinal European Autism Project]. We extracted frequency and functional network-based features from 10 to 20 s epochs of resting-state EEG, including relative power spectral density, peak alpha frequency, network topology measures and brain network ictogenicity: a computational measure of the propensity of networks to generate seizure dynamics. We tested for differences between epilepsy and control EEGs using univariate, multivariable and receiver operating curve analysis. In addition, we explored the heterogeneity of EEG features within and between cohorts by testing for associations with potentially influential factors such as age, sex, epoch length and time, as well as testing for associations with clinical phenotypes including anti-seizure medication, and seizure characteristics in the epilepsy cohort. P-values were corrected for multiple comparisons. Univariate analysis showed significant differences in power spectral density in delta (2–5 Hz) (P = 0.0007, hedges’ g = 0.55) and low-alpha (6–9 Hz) (P = 2.9 × 10−8, g = 0.80) frequency bands, peak alpha frequency (P = 0.000007, g = 0.66), functional network mean degree (P = 0.0006, g = 0.48) and brain network ictogenicity (P = 0.00006, g = 0.56) between epilepsy and controls. Since age (P = 0.009) and epoch length (P = 1.7 × 10−8) differed between the two groups and were potential confounders, we controlled for these covariates in multivariable analysis where disparities in EEG features between epilepsy and controls remained. Receiver operating curve analysis showed low-alpha power spectral density was optimal at distinguishing epilepsy from controls, with an area under the curve of 0.72. Lower average normalized clustering coefficient and shorter average normalized path length were associated with poorer seizure control in epilepsy patients. To conclude, individuals with juvenile myoclonic epilepsy have increased power of neural oscillatory activity at low-alpha frequencies, and increased brain network ictogenicity compared with controls, supporting evidence from studies in other epilepsies with considerable external validity. In addition, the impact of confounders on different frequency-based and network-based EEG features observed in this study highlights the need for careful consideration and control of these factors in future EEG research in idiopathic generalized epilepsy particularly for their use as biomarkers

    Temporal Evolution of Multiday, Epileptic Functional Networks Prior to Seizure Occurrence

    Get PDF
    Epilepsy is one of the most common neurological disorders, characterized by the occurrence of repeated seizures. Given that epilepsy is considered a network disorder, tools derived from network neuroscience may confer the valuable ability to quantify the properties of epileptic brain networks. In this study, we use well-established brain network metrics (i.e., mean strength, variance of strength, eigenvector centrality, betweenness centrality) to characterize the temporal evolution of epileptic functional networks over several days prior to seizure occurrence. We infer the networks using long-term electroencephalographic recordings from 12 people with epilepsy. We found that brain network metrics are variable across days and show a circadian periodicity. In addition, we found that in 9 out of 12 patients the distribution of the variance of strength in the day (or even two last days) prior to seizure occurrence is significantly different compared to the corresponding distributions on all previous days. Our results suggest that brain network metrics computed fromelectroencephalographic recordings could potentially be used to characterize brain network changes that occur prior to seizures, and ultimately contribute to seizure warning systems

    Primality Tests And Algorithms For Factoring Integers

    No full text
    σ.Στην παρούσα εργασία , θα παρουσιασθούν μέθοδοι πιστοποίησης πρώτων αριθμών και αλγόριθμοι παραγοντοποίησης ακεραίων. Ξεκινώντας από τις κλασσικές μεθόδους , στο πρώτο κεφάλαιο παραθέτονται η μέθοδος των διαδοχικών διαιρέσεων , το κόσκινο του Ερατοσθένη , και η παραγοντοποίηση του Fermat και του Euler. Στο δεύτερο κεφάλαιο , αναφέρονται στοιχεία από τη Θεωρία Αριθμών τα οποία αποτελούν σημαντικές γνώσεις για την κατανόηση βασικών ιδεών στην πιστοποίηση πρώτων και την παραγοντοποίηση. Στο τρίτο κεφάλαιο αναλύονται τα κριτήρια των Fermat , Miller-Rabin και Solovay-Strassen για την πιστοποίηση πρώτων . Τέλος , το τέταρτο κεφάλαιο αφορά την παραγοντοποίηση ακεραίων και θα αναλυθούν οι αλγόριθμοι του Dixon , p-1 και Rho του J.Pollard.In the present thesis , tests for primality and algorithms for factoring integers will be presented. Starting from the classical methods , the first chapter cites the method of successive trial divisions , the sieve of Eratosthenes , Fermat's and Euler's factorization. In the second chapter , we state some elements from Number Theory that are significant Knowledge to understand basic ideas for factoring and primality. In the third chapter , the citeria of Fermat's , Miller-Rabin and Solovay-Strassen to certificate primes, will be analyzed. Finally , the fourth chapter is about factoring integers so algorithms of Dixon's , J.Pollard's p-1 and Rho will be presented and analyzed.Ερωφίλη Π. Λαΐο

    Feasibility and acceptability of an ultra-long-term at-home EEG monitoring system (EEG@HOME) for people with epilepsy

    No full text
    © 2023 Elsevier Inc. All rights reserved.Background: Recent technological advancements offer new ways to monitor and manage epilepsy. The adoption of these devices in routine clinical practice will strongly depend on patient acceptability and usability, with their perspectives being crucial. Previous studies provided feedback from patients, but few explored the experience of them using independently multiple devices independently at home. Purpose: The study, assessed through a mixed methods design, the direct experiences of people with epilepsy independently using a non-invasive monitoring system (EEG@HOME) for an extended duration of 6 months, at home. We aimed to investigate factors affecting engagement, gather qualitative insights, and provide recommendations for future home epilepsy monitoring systems. Materials and methods: Adults with epilepsy independently were trained to use a wearable dry EEG system, a wrist-worn device, and a smartphone app for seizure tracking and behaviour monitoring for 6 months at home. Monthly acceptability questionnaires (PSSUQ, SUS) and semi-structured interviews were conducted to explore participant experience. Adherence with the procedure, acceptability scores and systematic thematic analysis of the interviews, focusing on the experience with the procedure, motivation and benefits and opinion about the procedure were assessed. Results: Twelve people with epilepsy took part into the study for an average of 193.8 days (range 61 to 312) with a likelihood of using the system at six months of 83 %. The e-diary and the smartwatch were highly acceptable and preferred to a wearable EEG system (PSSUQ score of 1.9, 1.9, 2.4). Participants showed an acceptable level of adherence with all solutions (Average usage of 63 %, 66 %, 92 %) reporting more difficulties using the EEG twice a day and remembering to complete the daily behavioural questionnaires. Clear information and training, continuous remote support, perceived direct and indirect benefits and the possibility to have a flexible, tailored to daily routine monitoring were defined as key factors to ensure compliance with long-term monitoring systems. Conclusions: EEG@HOME study demonstrated people with epilepsy' interest and ability in active health monitoring using new technologies. Remote training and support enable independent home use of new non-invasive technologies, but to ensure long term acceptability and usability systems will require to be integrated into patients' routines, include healthcare providers, and offer continuous support and personalized feedback.The study is funded by Epilepsy Research UK, award number 1803. MPR, PFV, and EN are supported by the Epilepsy Foundation of America’s Epilepsy Innovation Institute My Seizure Gauge grant.info:eu-repo/semantics/publishedVersio

    Quantification and Selection of Ictogenic Zones in Epilepsy Surgery.

    Get PDF
    Network models of brain dynamics provide valuable insight into the healthy functioning of the brain and how this breaks down in disease. A pertinent example is the use of network models to understand seizure generation (ictogenesis) in epilepsy. Recently, computational models have emerged to aid our understanding of seizures and to predict the outcome of surgical perturbations to brain networks. Such approaches provide the opportunity to quantify the effect of removing regions of tissue from brain networks and thereby search for the optimal resection strategy. Here, we use computational models to elucidate how sets of nodes contribute to the ictogenicity of networks. In small networks we fully elucidate the ictogenicity of all possible sets of nodes and demonstrate that the distribution of ictogenicity across sets depends on network topology. However, the full elucidation is a combinatorial problem that becomes intractable for large networks. Therefore, we combine computational models with a genetic algorithm to search for minimal sets of nodes that contribute significantly to ictogenesis. We demonstrate the potential applicability of these methods in practice by identifying optimal sets of nodes to resect in networks derived from 20 individuals who underwent resective surgery for epilepsy. We show that they have the potential to aid epilepsy surgery by suggesting alternative resection sites as well as facilitating the avoidance of brain regions that should not be resected

    Protocol for an observational cohort study investigating biomarkers predicting seizure recurrence following a first unprovoked seizure in adults

    No full text
    Introduction A first unprovoked seizure is a common presentation, reliably identifying those that will have recurrent seizures is a challenge. This study will be the first to explore the combined utility of serum biomarkers, quantitative electroencephalogram (EEG) and quantitative MRI to predict seizure recurrence. This will inform patient stratification for counselling and the inclusion of high-risk patients in clinical trials of disease-modifying agents in early epilepsy.Methods and analysis 100 patients with first unprovoked seizure will be recruited from a tertiary neuroscience centre and baseline assessments will include structural MRI, EEG and a blood sample. As part of a nested pilot study, a subset of 40 patients will have advanced MRI sequences performed that are usually reserved for patients with refractory chronic epilepsy. The remaining 60 patients will have standard clinical MRI sequences. Patients will be followed up every 6 months for a 24-month period to assess seizure recurrence. Connectivity and network-based analyses of EEG and MRI data will be carried out and examined in relation to seizure recurrence. Patient outcomes will also be investigated with respect to analysis of high-mobility group box-1 from blood serum samples.Ethics and dissemination This study was approved by North East—Tyne & Wear South Research Ethics Committee (20/NE/0078) and funded by an Association of British Neurologists and Guarantors of Brain clinical research training fellowship. Findings will be presented at national and international meetings published in peer-reviewed journals.Trial registration number NIHR Clinical Research Network's (CRN) Central Portfolio Management System (CPMS)—44976
    corecore