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Abstract

Background: Epileptic seizures are spontaneous events that severely affect the lives of patients due to their recurrence and
unpredictability. The integration of new wearable and mobile technologies to collect electroencephalographic (EEG) and
extracerebral signals in a portable system might be the solution to prospectively identify times of seizure occurrence or propensity.
The performances of several seizure detection devices have been assessed by validated studies, and patient perspectives on
wearables have been explored to better match their needs. Despite this, there is a major gap in the literature on long-term, real-life
acceptability and performance of mobile technology essential to managing chronic disorders such as epilepsy.

Objective: EEG@HOME is an observational, nonrandomized, noninterventional study that aims to develop a new feasible
procedure that allows people with epilepsy to independently, continuously, and safely acquire noninvasive variables at home.
The data collected will be analyzed to develop a general model to predict periods of increased seizure risk.

Methods: A total of 12 adults with a diagnosis of pharmaco-resistant epilepsy and at least 20 seizures per year will be recruited
at King’s College Hospital, London. Participants will be asked to self-apply an easy and portable EEG recording system (ANT
Neuro) to record scalp EEG at home twice daily. From each serial EEG recording, brain network ictogenicity (BNI), a new
biomarker of the propensity of the brain to develop seizures, will be extracted. A noninvasive wrist-worn device (Fitbit Charge
3; Fitbit Inc) will be used to collect non-EEG biosignals (heart rate, sleep quality index, and steps), and a smartphone app (Seer
app; Seer Medical) will be used to collect data related to seizure occurrence, medication taken, sleep quality, stress, and mood.
All data will be collected continuously for 6 months. Standardized questionnaires (the Post-Study System Usability Questionnaire
and System Usability Scale) will be completed to assess the acceptability and feasibility of the procedure. BNI, continuous
wrist-worn sensor biosignals, and electronic survey data will be correlated with seizure occurrence as reported in the diary to
investigate their potential values as biomarkers of seizure risk.

Results: The EEG@HOME project received funding from Epilepsy Research UK in 2018 and was approved by the Bromley
Research Ethics Committee in March 2020. The first participants were enrolled in October 2020, and we expect to publish the
first results by the end of 2022.
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Conclusions: With the EEG@HOME study, we aim to take advantage of new advances in remote monitoring technology,
including self-applied EEG, to investigate the feasibility of long-term disease self-monitoring. Further, we hope our study will
bring new insights into noninvasively collected personalized risk factors of seizure occurrence and seizure propensity that may
help to mitigate one of the most difficult aspects of refractory epilepsy: the unpredictability of seizure occurrence.

International Registered Report Identifier (IRRID): PRR1-10.2196/25309

(JMIR Res Protoc 2021;10(3):e25309) doi: 10.2196/25309
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Introduction

Background and Rational
Epilepsy is one of the most common neurological disorders,
affecting over 65 million people worldwide, and is characterized
by recurrent seizures [1]. The unpredictability of these events
is one of the key challenges in this disorder. One in 3 people
with a diagnosis of epilepsy do not respond fully to antiepileptic
drugs and continue to have seizures [2]. Currently, a solution
to assess daily seizure risk and understand seizure triggers would
be fundamental to improving quality of life and safety for people
with epilepsy and allow the testing of new targeted therapies
during periods of high seizure risk (chronotherapy) [3] and a
better understanding of individual seizure cycles [4,5]. It might
prevent accidents and injuries by giving people with epilepsy
time to find a safe place before seizure onset [6] and reduce
anxiety and stress, which affect 30% to 50% of people with
epilepsy [7,8]. Unfortunately, a feasible solution to continuously
monitor and assess this risk is not available.

The development of new wearable devices and smartphone apps
that could help people with epilepsy to monitor the evolution
of their epilepsy would be a clear step in this direction. During
the last few years, smartphone apps and wearable devices that
allow long-term monitoring of relevant parameters have been
developed with the aim to satisfy both the increasingly urgent
need for new reliable devices and techniques as well as patient
needs and expectations [9].

Smartphone apps now allow people with epilepsy to collect and
share with medical professionals information regarding
medication, seizure types, and other information that may relate
to seizure occurrence [10]. A few studies have used self-reported
questionnaires and electronic diaries to explore the association
between sleep-wake cycles, menstrual cycles, stress, poor sleep,
failure to take treatment, and an elevated seizure risk, revealing
a clear relation between some of these variables and seizure
occurrence [11-13]. Karoly and colleagues [4] showed that it
is possible to identify, using self-reported e-diaries, a subset of
patients with robust circadian and multidien seizure cycles.
They also reported that estimates of seizure likelihood based
on patient-reported cycles were predictive of electrographic
seizures [5].

Additionally, some studies have explored the use of wearable
devices combining multiple physiological variables to develop
automated seizure detection systems [14]. These studies have
shown, with different levels of accuracy and sensitivity, that it
is possible to detect specific seizure types characterized by

stereotyped events (ie, bilateral tonic-clonic seizure) using
electrodermal activity, muscle activity, or heart rate [15-18].

Finally, there is strong evidence that factors associated with
elevated seizure risk can be objectively detected using
electroencephalography (EEG). Video EEG monitoring is the
gold standard for the diagnosis of epilepsy. However,
conventional video EEG requires patients to stay in the
monitoring unit until the collection of multiple seizures is
completed. This is an expensive solution and impractical for
long-term recording, and it is not well accepted by some patients
[19]. Another solution is home video electroencephalographic
telemetry. It reduces high costs and long waiting times for
hospital admission but presents problems related to long-term
electrode attachment on the scalp and correct camera placement
while the patient is unsupervised at home, and there are concerns
related to regulations regarding data privacy for cloud services
[20].

New portable or implantable EEG devices allow for the
continuous collection of high-quality data outside of the hospital
without direct supervision by a specialist [21,22]. One clinical
trial demonstrated a proof-of-principle, real-time seizure
prediction system in a cohort of 15 people with epilepsy using
an intracranially implanted EEG device (NeuroVista seizure
advisory system) [23]. Weisdorf et al [24] and Gangstad et al
[25] demonstrated the acceptability and data quality of an
implanted subcutaneous EEG system (Uneeg 24/7 EEG SubQ;
Uneeg Medical) during a long-term trial in outpatients with
focal epilepsy. Askamp and Van Putten [26] also showed that
the use of a portable EEG solution for at-home assessment
(Mobita 32-Channel Wireless EEG System; Twente Medical
Systems International) was well accepted by adult patients with
intractable epilepsy as well as neurologists and that data
collected were comparable with a normal ambulatory scalp
EEG. Finally, an ongoing study called HOMEone aims to
provide evidence of the diagnostic and therapeutic yield of a
patient-controlled portable EEG device (Fourier One; Nielsen
Consumer Neuroscience) with dry electrodes for the purposes
of EEG home monitoring of neurological outpatients [27]. All
these studies [13,23] have shown that it may be feasible and
clinically valuable to monitor patients with epilepsy outside of
the hospital or research settings thanks to the development of
new portable and easy-to-use devices. Despite this, clear
information about the long-term and remote acceptability and
performance of mobile technology is still not available in the
literature.
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To bridge this gap, high data quality and good compliance are
needed. The first step is the design of an acceptable and feasible
procedure to noninvasively monitor patients at home. Starting
from this key point, we decided to design a procedure
(EEG@HOME) to investigate whether frequent measurements
performed independently by people with epilepsy using a
portable EEG cap with dry electrodes (waveguard touch; ANT
Neuro), smartphone app (Seer app; Seer Medical), and
wrist-worn device (Fitbit Charge 3; Fitbit Inc) in their home
environment would be feasible and acceptable.

The successful implementation of an at-home, long-term
monitoring procedure like this will enable a novel and innovative
approach to epilepsy management. It promises to provide key
information to prospectively identify periods of higher seizure
risk and improve the management of epilepsy.

Study Objectives
The main goal of the EEG@HOME study is to develop and test
a feasible and acceptable procedure for people with epilepsy to
easily undertake twice-daily, at-home EEG coupled with an
event app and continuous data collection from a wrist-worn
wearable sensor device. All the information gathered about
acceptability and feasibility of the procedure will be published
and used to refine methods for future and larger controlled
studies at home.

The study will produce a substantial amount of continuous data
from people with epilepsy over many months. Assuming
complete data collection, we estimate having 60 hours of raw
EEG data and 4000 hours of raw wrist-worn sensor data
collected at home per participant in addition to patient-reported
events. Recognizing the uniqueness of the data set, we will
curate it and make anonymized data and clinical metadata
available to other researchers, with the aim to create an open
database for future research.

The unique set of wearable EEG data, sensor data, and
self-reported events will be then analyzed to develop a general
model to predict periods of increased seizure risk. The
association between self-reported events (seizures, medication
taking), sensor data (sleep, heart rate), and EEG features will
be investigated within and between subjects.

Methods

Study Design and Population
EEG@HOME is an observational nonrandomized and
noninterventional study. A total of 12 people with epilepsy
referred as part of their routine clinical care to the epilepsy
clinics at King’s College Hospital and partner hospitals will be
enrolled. Patients will be included if they have received a
diagnosis of treatment-resistant epilepsy, their age is between
18 and 75 years, and they experience more than 12 seizures
(with impaired awareness) per year according to their seizure

diary. A current diagnosis of psychogenic nonepileptic attacks
(dissociative seizures), inability to comply with the trial
procedure or give informed consent, and the use of other
electronic medical devices that could interfere with the data
collection will result in exclusion from the study.

Study Overview
Participants will be initially identified among those attending
a routine outpatient appointment, hospital video EEG Epilepsy
Monitoring Unit admission, or home video EEG monitoring
appointment at the participating sites. These individuals will be
approached by a member of the on-site research team and given
the study participant information sheet. This will be labelled
“first approach.”

After the participants have at least 24 hours to read the
participant information sheet and consider enrolling, the research
team will contact the participants and invite them to attend visit
1 (inclusion and training). All study procedures and eligibility
criteria will be discussed, and the EEG device and wrist-worn
sensor will be shown to the patients. If the patient is willing to
participate, written informed consent to participate in the study
will be obtained. Procedures for using the equipment will then
be explained. By the end of the inclusion and training visit, the
participant should be able to collect their own EEG data,
wrist-worn sensor data, and app data independently. An
appointment for the next visit will be scheduled after
approximately one month. The participant will start to collect
their data immediately after visit 1.

After this, the patient will attend monthly follow-up visits up
to 6 times (visits 2-7), carried out in the patient’s home or in
the research facility of the hospital, according to participant
preference. These meetings will allow the research team to
confirm the correct collection and download of the event diaries
and sensor data. Furthermore, compliance with procedures will
be assessed.

At visit 7, the final study visit, acceptability and usability of the
technology will be assessed. Participants will be asked to
complete a short questionnaire and then a semistructured
interview (15 minutes). The detailed flowchart of all the events
is presented in Figure 1.

This study will be carried out in accordance with the World
Medical Association Declaration of Helsinki (1964); The
Research Governance Framework for Health and Social Care
(second edition, 2005); the Data Protection Act (2018), which
includes the provisions of the General Data Protection
Regulation; and the principles of Good Clinical Practice (GCP).
All devices are Conformitè Europëenne (CE) marked for the
purpose for which they will be used in this study. All
investigators will have up-to-date training in GCP. All staff
working on the study have received training in study conduct,
informed consent, and risk assessment.
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Figure 1. Schedule of events in the EEG@HOME study. BIPQ: Brief Illness Perception Questionnaire; EEG: electroencephalography; PSSUQ:
Post-Study System Usability Questionnaire; SUS: System Usability Questionnaires.

Study Withdrawal
Participants will be free to withdraw from the study at any time.
In the case of participant self-withdrawal, a face-to-face
appointment will be scheduled to establish the cause of
withdrawal, collect qualitative and quantitative data regarding
their experience, and collect the EEG system and equipment.
All data, including those from study withdrawals, will be
included in the final analysis.

Study Technology
The ANT Neuro eego mini-series (miniaturized EEG recording
system) and ANT Neuro waveguard touch (easy-to-use
8-channel dry EEG cap) will be used to record EEG twice daily
for 10 minutes [28] (Figure 2). These will provide a quick and
easy setup that people with epilepsy can use at home without
technical support. The dedicated computer recording software

(eego; ANT Neuro) allows the review of the data online and
offline and the possibility to parse the data into the standard file
format.

The ANT Neuro eego was selected from a shortlist of
commercial devices. Following Pinho and colleagues’ work
[29], an EEG system used for clinical purposes in outpatients
must meet 9 requirements: wireless connectivity, dry electrodes,
signal resolution, sampling frequency, comfort, portability,
signal artifact attenuation, event detection, and event prediction.
Neumann et al [27] also added the necessity of an integrated
and structured reporting system and full coverage of the 10-20
System of electrode placement. The ANT Neuro eego meets
several of these technical demands required for a clinical
outpatient EEG system but not all of them. Technical
specifications of the device compared with other available
devices are also summarized in Table 1.

Figure 2. The ANT Neuro eego mini-series and ANT Neuro waveguard touch.
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Table 1. Specifications of commercially available EEG portable solutions for diagnostic or research purposes.

Weight (g)Electrode placementElectrodesResolutionBatterySample rateChannelsDevice (Manufacturer)

22510-20 SystemWater-based electrodes24-bitRechargeableUp to 2000
Hz

Up to 32Mobita (Twente Medical
Systems International)

17010-20 SystemSaline-based electrodes16-bitRechargeableUp to 64 Hz14Epoc+ (Emotiv)

—a10-20 SystemDry silver electrodes24-bitRechargeableUp to 500
Hz

19Fourier One (Nielsed)

27010-20 SystemActively shielded elec-
trode wires

16-bitRechargeableUp to 512
Hz

32Safiro (Compumedics)

—10-20 SystemHandy gel, solid gel,
and dry electrode solu-
tions (Ag-AgCl coat-
ing)

24-bitRechargeableUp to 125
Hz

8 to 32Enobio (Neuroelectric)

59610-20 SystemDry electrodes (Ag-Ag-
Cl coating)

24-bitRechargeableUp to 1000
Hz

8 to 30Quick (Cognionics)

10010-20 SystemDry silver electrodes24-bitConnected with
a computer or
tablet

Up to 2084
Hz

8 to 64Eego amplifier series
(ANT Neuro)

aNot available.

A Fitbit Charge 3 will be provided, and during the first approach
visit, the need to wear the device continuously will be explained.
The Fitbit Charge 3 is a consumer-oriented fitness tracker that
provides 24/7 estimates of heart rate, estimates of sleep stages,
and activity information (steps, calories, sport activity). The
device uses a combination of a microelectronic triaxial
accelerometer to capture body motion in 3D space and a
photoplethysmogram to extract heart rate. Proprietary algorithms
are implemented to identify daily steps taken, sleep, and other
activities (eg, running, biking) [30]. This device was selected
from a list of wrist-worn devices based on dependability,

durability (battery life of up to 7 days), and user acceptability
[31]. The Fitbit smartphone app will be installed on the patient’s
mobile phone through an anonymized email account.

The Seer app (available for Android and iOS devices) [32] is a
smartphone app for people with epilepsy to keep track of their
seizures and medications. It was created with the aim of helping
people with epilepsy manage their symptoms and treatment. It
allows patients to report different events, add notes, and receive
feedback and visualize it (Figure 3). The Seer app will be
downloaded to the patient’s mobile phone using an anonymized
email account.

Figure 3. Multiple screens of the Seer app’s events function.

Data Measured
Electroencephalographic data will be collected using the ANT
Neuro eego (approximately 10 minutes of recording while the
participant is resting with eyes closed every morning and
evening at an interval of approximately 12 hours). First, 1
trained neurologist will visually examine each 10 minutes of
EEG recorded, and all the focal interictal epileptiform discharges

(IEDs), generalized spike-wave discharges, and focal slowing
will be marked. Then, at least one 20-second segment of EEG
while the participant is awake with eyes closed that is free of
movement and artifacts, signs of drowsiness or sleep, or IEDs
will be selected from each recording.

From each segment, different EEG features will be extracted,
starting from simple conventional measures to more complex

JMIR Res Protoc 2021 | vol. 10 | iss. 3 | e25309 | p. 5https://www.researchprotocols.org/2021/3/e25309
(page number not for citation purposes)

Biondi et alJMIR RESEARCH PROTOCOLS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


and novel biomarkers. Initially, the power spectra will be
calculated. Specifically, our analysis will be focused on 5
frequency bands (1-5 Hz, 6-9 Hz, 10-11 Hz, 12-19 Hz, and
21-70 Hz) defined from previous literature [33,34].

The first measure that will be calculated is the alpha power shift.
It is defined as the ratio of average power in the low-alpha power
(6-9 Hz) over average power in the high-alpha power (10-11
Hz). Abela and colleagues [35] compared patients with good
and poor (4 or more seizures in 12 months) seizure control,
showing that alpha power shift is a robust indicator of seizure
liability.

In addition, from each 20-second EEG segment, we will infer
functional brain networks in which each node corresponds to
the brain region underneath each electrode and the edges denote
statistical dependencies between the corresponding EEG signals.
We will use the phase-locking factor, ignoring all connections
at zero lag [36] as well as those that are not statistically
significantly different from surrogate data [37]. We will quantify
structural properties of the functional brain networks using
graph theory metrics, such as the mean and variability of the
degree distribution and clustering coefficient [33,38].

Complementary to this graph theory analysis, we will employ
a computational modeling framework, the so-called brain
network ictogenicity (BNI), which quantifies the propensity of
a brain network to generate seizures [39,40]. In this modeling
framework, brain models that are able to transit between normal
and seizure-like activity are connected using the same
connectivity obtained from the functional network that was
computed from the EEG signals. This framework is specific to
the individual, since it uses the connections obtained from each
individual. In order to quantify the contribution of a single brain
region (ie, single node in the functional network) to the
generation of seizures, we will use the quantity of node
ictogenicity (NI), which measures the changes in BNI upon
removal of a single node [40]. Therefore, for each 20-second
EEG segment, we will obtain 1 BNI value as well as 8 NI values
for each node.

In this study, the mentioned EEG features will be evaluated for
their predictive value for seizure occurrence and for their
potential association with other variables, like treatment, heart
rate, sleep, and mood or stress.

Heart rate will be continuously (24/7) estimated using the Fitbit
Charge 3 for 6 months. We will specifically use the output of
the Fitbit proprietary algorithm, which estimates heart rate from
the photoplethysmography sensors approximately every 5 to
15 seconds. Changes in heart rate that could associate with and
potentially predict seizure occurrences will be evaluated [41].

Sleep will be also assessed every day. The Fitbit Charge 3 will
provide sleep duration (hours and minutes), sleep stages (hours
and minutes spent in deep sleep, light sleep, rapid eye
movement, and awake), and a Fitbit Quality Sleep Score Index
(from 0 [worst] to 100 [best]). Similar to the heart rate analysis,
we will investigate changes in sleep that could associate with
and potentially predict seizure occurrences.

Through the Seer app, participants will provide a range of
patient-reported outcomes with information regarding their

mood (twice per day, range of 1-5), stress level (twice per day,
range of 1-3), sleep quality (in which participants rate last
night’s sleep compared with the previous night, with choices
for worse, usual, and better), medication compliance (twice per
day, binary yes or no), and seizure events (seizure start, end,
and movement) via brief app questionnaires. The questions were
selected and adapted to our study from already published studies
focused on seizure precipitants and triggers [11,12]. Changes
in these patient-reported outcomes that could associate with and
potentially predict seizure occurrences will be evaluated.

To provide information about patient characteristics that could
determine compliance and feasibility, a set of questionnaires
will be administered. Beliefs and attitudes will be assessed using
the Brief Illness Perception Questionnaire (BIPQ). It is a
validated 9-item scale designed to rapidly assess the patients’
emotional and cognitive illness representations. The
questionnaire is structured in 6 sections to assess different
factors: consequences (BIPQ 1), timeline (BIPQ 2), personal
control (BIPQ 3), treatment control (BIPQ 4), identity (BIPQ
5), concern (BIPQ 6), and emotions (BIPQ 8). Finally, 1 item
assesses illness comprehensibility (BIPQ 7) [42].

Two validated questionnaires (System Usability Scale [SUS]
and Post-Study System Usability Questionnaire [PSSUQ]) will
be used to assess participants’ first impressions after the training
and the overall experience of the study, respectively. The SUS
is a 10-item usability questionnaire that will be used in this
study to evaluate interaction with the ANT Neuro EEG recording
system and the Fitbit Charge 3. It is an easy and fast scale to
administer and has been validated on small sample sizes with
reliable results that allow effective differentiation between
usable and unusable systems [43].

The PSSUQ is a short and validated questionnaire that will be
used in this study to assess patients’ experiences with the EEG
system and the Fitbit Charge 3. It includes 16 items created to
measure users’ perceived satisfaction with a system at the end
of a study [44]

Finally, a semistructured interview will be scheduled at the end
of the study. The researcher will collect direct feedback from
the participants about their experience, impression of the
devices, comfort, problems and issues, future solutions and
improvements, suggestions, reasons for discontinuing wearing
a device (if they dropped out), possible concerns, and data
privacy and security.

Data Security and Privacy
Each participant will be assigned a sequential identification
code (ie, EEGatHOME00?) used to collect, store, and report
participant information. The key to the pseudonymization code
will be held in the hospital computer system. Each participant
will also receive a nonidentifiable email (ie,
eeghome001@xxxx.com) that will be used only for data
collection and streaming from the apps to the server. All digital
and nondigital information related to study participants will be
nonidentifiable in accordance with the General Data Protection
Regulation.

Data acquired from the ANT EEG system and Fitbit wrist-worn
biosensor will be encrypted, pseudonymized, and uploaded
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automatically to secure servers managed by the research team
and already approved for long-term patient data collection. Data
collected from the smartphone app will be also collected and
entered in a password-protected database and stored locally and
on a secure server. No personally identifying data will be stored
or processed within research infrastructure. The research team
will assess on a weekly basis the amount of data collected by
each participant to evaluate the missing rate and ensure the best
data quality.

Clinical information and questionnaires will be collected using
pseudonymized forms. Study documents will not contain any
identifying information, only study numbers. All questionnaires
and documents collected as part of the study process will be
stored on password-protected computers.

Although we have access to sufficient infrastructure and storage
for the data set for this study, a larger study or real-life rollout
of a monitoring system of this kind would require a very large,
secure infrastructure that would need to be compatible with
legal requirements in multiple countries. These considerations
are outside the scope of this study.

Analysis Plan
At the end of the 6 months, for each participant, the research
team expects to have up to 4380 hours of continuous data from
the Fitbit Charge 3, 365 EEG segments, 730 daily
questionnaires, 7 acceptability questionnaires (BIPQ, SUS, and
PSSUQ) and 1 semistructured interview. We also expect that
during the study, each participant will have at least 6 seizures,
and therefore, the total number of seizures across all patients is
expected to be at least 72.

Initially, descriptive statistics will be applied on questionnaires
(BIPQ, SUS, and PSSUQ) and demographic information (age,
sex, and education) to have an overview of the overall
experience. Data missing rate will be also calculated for each
device and descriptive analysis will be applied. Using regression
analysis, we will investigate if any demographics or other
numerical information (sleep, mood, stress) serves as a predictor
for participant dropout (if it occurs before the end of the 6
months). We will then estimate for each participant whether
there is any relationship between the data missing rate and the
self-reported measures (sleep, mood, stress) as well as the
monthly acceptability assessment (PSSUQ).

Finally, a thematic analysis will be performed on the recorded
semistructured interviews and the weekly call. Audiorecordings
will be transcribed, and then a thematic analysis will be
performed using NVivo software (version 12; QSR
International) by 2 researchers working independently. Initially,
the major themes and subthemes will be identified. Once all
themes and subthemes are labeled, a secondary analysis will be
performed to categorize the dimensions extracted.

The quantitative measures will be computed using data from 3
periods: preictal (within a defined period prior to seizures),
postictal (within a defined period following seizures), and
interictal (all other times). We will rerun our analysis using 3
different time periods for preictal and postictal periods (24
hours, 72 hours, 7 days); interictal time periods of the same
duration as the preictal and postictal periods will be randomly

selected from interictal periods approximately equidistant from
consecutive seizures. For each peri-ictal period, we will calculate
the median of each of the following variables: BNI, variability
of NI distribution, mean degree, clustering coefficient, and alpha
power shift. We will also calculate the median heart rate, total
steps, total sleep hours, mean mood, and mean stress in the 12
hours prior to the EEG measurements.

The primary analysis will be assessed by the area under the
receiver operating characteristic curve (AUC) using each of the
5 variables. AUC is the current gold standard for the evaluation
of seizure detection and seizure prediction performance.

In an exploratory factor analysis, we will investigate
relationships between variables and their independent predictive
values using mixed-effects logistic regression models with
repeated measurements. For each seizure, the repeated
measurements will be the same variables as the primary analysis
and the questionnaires (mood, stress, sleep quality,
self-assessment of seizure risk, and medication taken) in the
preictal, postictal, and interictal periods.

Results

The EEG@HOME project received funding in 2018 by Epilepsy
Research UK (Multimedia Appendix 1) and was approved by
the Bromley Research Ethics Committee (REC reference:
19/LO/0554) in March 2020. Pilot data to test the feasibility
and practicality of the procedure, from the use of wearable
devices to the data analysis, were collected from April to June
2020. The first group of participants were enrolled in October
2020, and the first results are planned to be published by the
end of 2022.

Discussion

Study Contributions and Implications
EEG@HOME aims to provide an innovative and flexible
procedure that, combining the use of new and multiple
technologies, will give patients with epilepsy a solution to
monitor their condition independently.

Over 72% of the population in the United States has a
smartphone [45], and 60% of people with a mobile phone have
downloaded a health app [46]. A recent study also supports the
acceptability of new solutions for people with epilepsy, reporting
that 80% were willing to use a wearable device for seizure
tracking and 69% were also willing to use a smartphone app
[47]. These studies highlight the fact that clinical populations
are ready to use new technology to better manage their
condition. Collecting physiological signals in real time by using
a wearable device and self-reporting events with an e-diary can
improve compliance and accuracy of epilepsy monitoring [48].
Despite this, a reliable procedure to easily monitor seizure
occurrence and triggers that clinicians can recommend to people
with epilepsy after initial diagnosis is not currently available.
Furthermore, the long-term performance of wearable devices
for people with epilepsy has been assessed in only a few studies
[23,49].

JMIR Res Protoc 2021 | vol. 10 | iss. 3 | e25309 | p. 7https://www.researchprotocols.org/2021/3/e25309
(page number not for citation purposes)

Biondi et alJMIR RESEARCH PROTOCOLS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


To better understand the real impact that these new technologies
will have in monitoring people with epilepsy in their daily lives
as well as the utility of the data collected, more long-term studies
in clinical populations are needed. In Figure 4, we propose a
model that outlines the possible outcomes that a prolonged

(active and passive) interaction between patients, caregivers,
health professionals, and new technology could have in patients’
lives, clinical pathways, and research, as we propose in
EEG@HOME.

Figure 4. eHealth model of new technology for patients with epilepsy. AED: antiepileptic drug; EEG: electroencephalogram.

One of the main innovations in EEG@HOME will be the use
of an easy-to-use portable electroencephalogram for long-term
intermittent recording. Multiple studies have applied portable
EEG solutions [50] to study usability, signal quality,
performance, and electrode types, but there is no study providing
information about the feasibility and acceptability of portable
or wearable solutions during patients’ independent long-term
monitoring at home. EEG@HOME will provide for the first
time a clear overview of participants’ and developers’ needs to
enable “out-of-the-lab” EEG recordings using a portable solution
with high compliance and high data quality.

Another key point of this procedure is the combination of
multiple technologies to collect detailed data associated with
seizure occurrence. Different studies have used self-reported
information to study the association between factors such as
sleep, mood or stress, and seizure occurrence. The influence of
each of these varies between people and is not reliably predictive
of seizure risk [51,52]. Other studies have used new wearable
devices to collect physiological data associated with seizures.
Despite this, a device capable of detecting multiple seizure types
with acceptable sensitivity and specificity is currently not
available, and the outcomes obtained by research studies are
not generalizable to all people with epilepsy [53]. EEG@HOME
will combine the use of all these solutions (wearable devices
and smartphone app) in combination with continuous biosensor
data and a self-reported diary to collect meaningful markers of
seizure risk. It will provide a better understanding of the
multifactorial nature of seizures, and the association between

these data could help in the identification of periods with a
higher risk of seizure.

The identification of reliable information about seizure
precipitants will also help people with epilepsy to avoid
situations that could worsen seizures or cause seizure-related
injuries. A continuous monitoring system that could detect
seizures and trigger assistance might enhance safety for people
with epilepsy [54]. It will increase the self-management and
self-efficacy of people with epilepsy. It is well known that poor
seizure control is associated with an increased incidence of
depression and other mental health disorders [55] as well as an
increase in family stress [56] and poor quality of life. It has also
been shown that employment rates for people with epilepsy
significantly improve to a level comparable to individuals who
do not have epilepsy if they achieve good seizure control [57].
Placing people with epilepsy in a more active role in the
monitoring and treatment of their condition may increase their
quality of life and help them regain a sense of control despite
the unpredictability of seizures [58].

EEG@HOME will provide a solution for health care providers
and caregivers to easily monitor their patients’ conditions and
use the information acquired for better treatment decisions. In
clinical practice, clinicians review seizure diaries and clinical
history as a proxy for future seizure risk. Decisions about
treatment are typically taken after a few months and multiple
visits [59,60]. This approach is not the most efficient but is
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unavoidable in the absence of a validated measure of future
seizure risk.

The data set that will be created from the long-term monitoring
during the EEG@HOME study will provide more information
about the circadian and multiday patterns of seizure occurrence
in epilepsy. Karoly and colleagues [5] found that 80% of people
with epilepsy had significant and specific temporal cycles in
their seizure activity. Most of the cycles were circadian (24
hours) and circaseptan (7 days), but some (approximately 20%)
of the seizure cycles were longer than 3 weeks. Increasing the
understanding of circadian and long-cycle factors may improve
the sensitivity of future seizure prediction algorithms to inform
more specific treatment schedules of traditional antiepileptic
drugs for individual patients [3].

Finally, multiple factors related to the characteristics of people
with epilepsy and device functionality that could affect the

experience of people with epilepsy during long-term monitoring
will be assessed throughout the study. Having an overview of
the main difficulties and critical factors will help in the design
of future, larger, long-term studies.

Conclusion
For these reasons, EEG@HOME is an innovative and flexible
procedure that will provide clear information for the design of
future data acquisition trials for the at-home management of
epilepsy and, potentially, other chronic neurological disorders.
The continuous use of wearables and e-diaries will help people
with epilepsy manage their condition and provide clinical
professionals with reliable information to monitor and control
their patients’ therapy. This procedure will improve the
interaction between people with epilepsy, caregivers, and heath
care providers. All the data collected will also allow the research
team to have reliable information for the development of
prediction algorithms and the design of future feasibility studies.
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