3,873 research outputs found
'The world is full of big bad wolves': investigating the experimental therapeutic spaces of R.D. Laing and Aaron Esterson
In conjunction with the recent critical assessments of the life and work of R.D. Laing, this paper seeks to demonstrate what is revealed when Laing’s work on families and created spaces of mental health care are examined through a geographical lens. The paper begins with an exploration of Laing’s time at the Tavistock Clinic in London during the 1960s, and of the co-authored text with Aaron Esterson entitled, Sanity, Madness and the Family (1964). The study then seeks to demonstrate the importance Laing and his colleague placed on the time-space situatedness of patients and their worlds. Finally, an account is provided of Laing’s and Esterson’s spatial thinking in relation to their creation of both real and imagined spaces of therapeutic care
The IRAS Revised Bright Galaxy Sample (RBGS)
IRAS flux densities, redshifts, and infrared luminosities are reported for
all sources identified in the IRAS Revised Bright Galaxy Sample (RBGS), a
complete flux-limited survey of all extragalactic objects with total 60 micron
flux density greater than 5.24 Jy, covering the entire sky surveyed by IRAS at
Galactic latitude |b| > 5 degrees. The RBGS includes 629 objects, with a median
(mean) sample redshift of 0.0082 (0.0126) and a maximum redshift of 0.0876. The
RBGS supersedes the previous two-part IRAS Bright Galaxy Samples, which were
compiled before the final ("Pass 3") calibration of the IRAS Level 1 Archive in
May 1990. The RBGS also makes use of more accurate and consistent automated
methods to measure the flux of objects with extended emission. Basic properties
of the RBGS sources are summarized, including estimated total infrared
luminosities, as well as updates to cross-identifications with sources from
optical galaxy catalogs established using the NASA/IPAC Extragalactic Database
(NED). In addition, an atlas of images from the Digitized Sky Survey with
overlays of the IRAS position uncertainty ellipse and annotated scale bars is
provided for ease in visualizing the optical morphology in context with the
angular and metric size of each object. The revised bolometric infrared
luminosity function, phi(L_ir), for infrared bright galaxies in the local
Universe remains best fit by a double power law, phi(L_ir) ~ L_ir^alpha, with
alpha = -0.6 (+/- 0.1), and alpha = -2.2 (+/- 0.1) below and above the
"characteristic" infrared luminosity L_ir ~ 10^{10.5} L_solar, respectively.
(Abridged)Comment: Accepted for publication in the Astronomical Journal. Contains 50
pages, 7 tables, 16 figures. Due to astro-ph space limits, only 1 of 26 pages
of Figure 1, and 1 of 11 pages of Table 7, are included; full resolution
Postscript files are available at
http://nedwww.ipac.caltech.edu/level5/March03/IRAS_RBGS/Figures/ .
Replacement: Corrected insertion of Fig. 15 (MethodCodes.ps) in LaTe
The magnetized medium around the radio galaxy B2 0755+37: an interaction with the intra-group gas
We explore the magneto-ionic environment of the isolated radio galaxy B2
0755+37 using detailed imaging of the distributions of Faraday rotation and
depolarization over the radio source from Very Large Array observations at
1385,1465 and 4860 MHz and new X-ray data from XMM-Newton. The Rotation Measure
(RM) distribution is complex, with evidence for anisotropic fluctuations in two
regions. The approaching lobe shows low and uniform RM in an unusual `stripe'
along an extension of the jet axis and a linear gradient transverse to this
axis over its Northern half. The leading edge of the receding lobe shows
arc-like RM structures with sign reversals. Elsewhere, the RM structures are
reasonably isotropic. The RM power spectra are well described by cut-off power
laws with slopes ranging from 2.1 to 3.2 in different sub-regions. The
corresponding magnetic-field autocorrelation lengths, where well-determined,
range from 0.25 to 1.4 kpc. It is likely that the fluctuations are mostly
produced by compressed gas and field around the leading edges of the lobes. We
identify areas of high depolarization around the jets and inner lobes. These
could be produced by dense gas immediately surrounding the radio emission
containing a magnetic field which is tangled on small scales. We also identify
four ways in which the well known depolarization (Faraday depth) asymmetry
between jetted and counter-jetted lobes of extended radio sources can be
modified by interactions with the surrounding medium.Comment: 16 pages, 13 figures, accepted for publication in MNRAS. Full
resolution paper available at: ftp://ftp.ira.inaf.it/pub/outgoing/guidetti/
Subjects: Cosmology and Extragalactic Astrophysics (astro-ph.CO
A relativistic model of the radio jets in NGC 315
We apply our intrinsically symmetrical, decelerating relativistic jet model
to deep VLA imaging of the inner 140 arcsec of the giant low-luminosity radio
galaxy NGC 315. An optimized model accurately fits the data in both total
intensity and linear polarization. We infer that the velocity, emissivity and
field structure in NGC 315 are very similar to those of the other
low-luminosity sources we have modelled, but that all of the physical scales
are larger by a factor of about 5. We derive an inclination to the line of
sight of 38 degrees for the jets. Where they first brighten, their on-axis
velocity is approximately v/c = 0.9. They decelerate to v/c = 0.4 between 8 and
18 kpc from the nucleus and the velocity thereafter remains constant. The speed
at the edge of the jet is roughly 0.6 of the on-axis value where it is best
constrained, but the transverse velocity profile may deviate systematically
from the Gaussian form we assume. The proper emissivity profile is split into
three power-law regions separated by shorter transition zones. In the first of
these, at 3 kpc (the flaring point) the jets expand rapidly at constant
emissivity, leading to a large increase in the observed brightness on the
approaching side. At 10 kpc, the emissivity drops abruptly by a factor of 2.
Where the jets are well resolved their rest-frame emission is
centre-brightened. The magnetic field is modelled as random on small scales but
anisotropic and we rule out a globally ordered helical configuration. To a
first approximation, the field evolves from a mixture of longitudinal and
toroidal components to predominantly toroidal, but it also shows variations in
structure along and across the jets, with a significant radial component in
places. Simple adiabatic models fail to fit the emissivity variations.Comment: 20 pages, 17 figures, MNRAS (in press
Search for a Standard Explanation of the Pioneer Anomaly
The data from Pioneer 10 and 11 shows an anomalous, constant, Doppler
frequency drift that can be interpreted as an acceleration directed towards the
Sun of a_P = (8.74 \pm 1.33) x 10^{-8} cm/s^2. Although one can consider a new
physical origin for the anomaly, one first must investigate the contributions
of the prime candidates, which are systematics generated on board. Here we
expand upon previous analyses of thermal systematics. We demonstrate that
thermal models put forth so far are not supported by the analyzed data.
Possible ways to further investigate the nature of the anomaly are proposed.Comment: Changes made for publicatio
Special Theory of Relativity through the Doppler Effect
We present the special theory of relativity taking the Doppler effect as the
starting point, and derive several of its main effects, such as time dilation,
length contraction, addition of velocities, and the mass-energy relation, and
assuming energy and momentum conservation, we discuss how to introduce the
4-momentum in a natural way. We also use the Doppler effect to explain the
"twin paradox", and its version on a cylinder. As a by-product we discuss
Bell's spaceship paradox, and the Lorentz transformation for arbitrary
velocities in one dimension.Comment: 20 pages, 1 figur
Calibration and High Fidelity Measurement of a Quantum Photonic Chip
Integrated quantum photonic circuits are becoming increasingly complex.
Accurate calibration of device parameters and detailed characterization of the
prepared quantum states are critically important for future progress. Here we
report on an effective experimental calibration method based on Bayesian
updating and Markov chain Monte Carlo integration. We use this calibration
technique to characterize a two qubit chip and extract the reflectivities of
its directional couplers. An average quantum state tomography fidelity of
93.79+/-1.05% against the four Bell states is achieved. Furthermore, comparing
the measured density matrices against a model using the non-ideal device
parameters derived from the calibration we achieve an average fidelity of
97.57+/-0.96%. This pinpoints non-ideality of chip parameters as a major factor
in the decrease of Bell state fidelity. We also perform quantum state
tomography for Bell states while continuously varying photon distinguishability
and find excellent agreement with theory
Anderson et al. Reply (to the Comment by Katz on Pioneer 10/11)
We conclude that Katz's proposal (anisotropic heat reflection off of the back
of the spacecraft high-gain antennae, the heat coming from the RTGs) does not
provide enough power and so can not explain the Pioneer anomaly.Comment: LaTex, 3 pages, Phys. Rev. Lett. (to be published
- …