58 research outputs found

    Abnormal splicing switch of DMD's penultimate exon compromises muscle fibre maintenance in myotonic dystrophy

    Get PDF
    International audienceMyotonic Dystrophy type 1 (DM1) is a dominant neuromuscular disease caused by nuclear-retained RNAs containing expanded CUG repeats. These toxic RNAs alter the activities of RNA splicing factors resulting in alternative splicing misregulation and muscular dysfunction. Here we show that the abnormal splicing of DMD exon 78 found in dystrophic muscles of DM1 patients is due to the functional loss of MBNL1 and leads to the re-expression of an embryonic dystrophin in place of the adult isoform. Forced expression of embryonic dystrophin in zebrafish using an exon-skipping approach severely impairs the mobility and muscle architecture. Moreover, reproducing Dmd exon 78 missplicing switch in mice induces muscle fibre remodelling and ultrastructural abnormalities including ringed fibres, sarcoplasmic masses or Z-band disorganization, which are characteristic features of dystrophic DM1 skeletal muscles. Thus, we propose that splicing misregulation of DMD exon 78 compromises muscle fibre maintenance and contributes to the progressive dystrophic process in DM

    Muscle cells of sporadic amyotrophic lateral sclerosis patients secrete neurotoxic vesicles

    Get PDF
    BACKGROUND: The cause of the motor neuron (MN) death that drives terminal pathology in amyotrophic lateral sclerosis (ALS) remains unknown, and it is thought that the cellular environment of the MN may play a key role in MN survival. Several lines of evidence implicate vesicles in ALS, including that extracellular vesicles may carry toxic elements from astrocytes towards MNs, and that pathological proteins have been identified in circulating extracellular vesicles of sporadic ALS patients. Because MN degeneration at the neuromuscular junction is a feature of ALS, and muscle is a vesicle-secretory tissue, we hypothesized that muscle vesicles may be involved in ALS pathology. METHODS: Sporadic ALS patients were confirmed to be ALS according to El Escorial criteria and were genotyped to test for classic gene mutations associated with ALS, and physical function was assessed using the ALSFRS-R score. Muscle biopsies of either mildly affected deltoids of ALS patients (n = 27) or deltoids of aged-matched healthy subjects (n = 30) were used for extraction of muscle stem cells, to perform immunohistology, or for electron microscopy. Muscle stem cells were characterized by immunostaining, RT-qPCR, and transcriptomic analysis. Secreted muscle vesicles were characterized by proteomic analysis, Western blot, NanoSight, and electron microscopy. The effects of muscle vesicles isolated from the culture medium of ALS and healthy myotubes were tested on healthy human-derived iPSC MNs and on healthy human myotubes, with untreated cells used as controls. RESULTS: An accumulation of multivesicular bodies was observed in muscle biopsies of sporadic ALS patients by immunostaining and electron microscopy. Study of muscle biopsies and biopsy-derived denervation-naĂŻve differentiated muscle stem cells (myotubes) revealed a consistent disease signature in ALS myotubes, including intracellular accumulation of exosome-like vesicles and disruption of RNA-processing. Compared with vesicles from healthy control myotubes, when administered to healthy MNs the vesicles of ALS myotubes induced shortened, less branched neurites, cell death, and disrupted localization of RNA and RNA-processing proteins. The RNA-processing protein FUS and a majority of its binding partners were present in ALS muscle vesicles, and toxicity was dependent on the expression level of FUS in recipient cells. Toxicity to recipient MNs was abolished by anti-CD63 immuno-blocking of vesicle uptake. CONCLUSIONS: ALS muscle vesicles are shown to be toxic to MNs, which establishes the skeletal muscle as a potential source of vesicle-mediated toxicity in ALS

    Increased Muscle Stress-Sensitivity Induced by Selenoprotein N Inactivation in Mouse: A Mammalian Model for SEPN1-Related Myopathy

    Get PDF
    Selenium is an essential trace element and selenoprotein N (SelN) was the first selenium-containing protein shown to be directly involved in human inherited diseases. Mutations in the SEPN1 gene, encoding SelN, cause a group of muscular disorders characterized by predominant affection of axial muscles. SelN has been shown to participate in calcium and redox homeostasis, but its pathophysiological role in skeletal muscle remains largely unknown. To address SelN function in vivo, we generated a Sepn1-null mouse model by gene targeting. The Sepn1−/− mice had normal growth and lifespan, and were macroscopically indistinguishable from wild-type littermates. Only minor defects were observed in muscle morphology and contractile properties in SelN-deficient mice in basal conditions. However, when subjected to challenging physical exercise and stress conditions (forced swimming test), Sepn1−/− mice developed an obvious phenotype, characterized by limited motility and body rigidity during the swimming session, as well as a progressive curvature of the spine and predominant alteration of paravertebral muscles. This induced phenotype recapitulates the distribution of muscle involvement in patients with SEPN1-Related Myopathy, hence positioning this new animal model as a valuable tool to dissect the role of SelN in muscle function and to characterize the pathophysiological process

    Compte rendu de la sĂ©ance de travail Ă  l’assemblĂ©e gĂ©nĂ©rale de Besançon (rĂŽle de l’éducation dans l’approche critique de l’information)

    No full text
    LainĂ© Marie, Chaton Jeanne-Henriette. Compte rendu de la sĂ©ance de travail Ă  l’assemblĂ©e gĂ©nĂ©rale de Besançon (rĂŽle de l’éducation dans l’approche critique de l’information). In: DiplĂŽmĂ©es, n°75, 1970. pp. 165-172

    Development of the excitation-contraction coupling machinery and its relation to myofibrillogenesis in human iPSC-derived skeletal myocytes

    No full text
    Abstract Background Human induced pluripotent stem cells-derived myogenic progenitors develop functional and ultrastructural features typical of skeletal muscle when differentiated in culture. Besides disease-modeling, such a system can be used to clarify basic aspects of human skeletal muscle development. In the present study, we focus on the development of the excitation-contraction (E-C) coupling, a process that is essential both in muscle physiology and as a tool to differentiate between the skeletal and cardiac muscle. The occurrence and maturation of E-C coupling structures (Sarcoplasmic Reticulum-Transverse Tubule (SR-TT) junctions), key molecular components, and Ca2+ signaling were examined, along with myofibrillogenesis. Methods Pax7+-myogenic progenitors were differentiated in culture, and developmental changes were examined from a few days up to several weeks. Ion channels directly involved in the skeletal muscle E-C coupling (RyR1 and Cav1.1 voltage-gated Ca2+ channels) were labeled using indirect immunofluorescence. Ultrastructural changes of differentiating cells were visualized by transmission electron microscopy. On the functional side, depolarization-induced intracellular Ca2+ transients mediating E-C coupling were recorded using Fura-2 ratiometric Ca2+ imaging, and myocyte contraction was captured by digital photomicrography. Results We show that the E-C coupling machinery occurs and operates within a few days post-differentiation, as soon as the myofilaments align. However, Ca2+ transients become effective in triggering myocyte contraction after 1 week of differentiation, when nascent myofibrils show alternate A-I bands. At later stages, myofibrils become fully organized into adult-like sarcomeres but SR-TT junctions do not reach their triadic structure and typical A-I location. This is mirrored by the absence of cross-striated distribution pattern of both RyR1 and Cav1.1 channels. Conclusions The E-C coupling machinery occurs and operates within the first week of muscle cells differentiation. However, while early development of SR-TT junctions is coordinated with that of nascent myofibrils, their respective maturation is not. Formation of typical triads requires other factors/conditions, and this should be taken into account when using in-vitro models to explore skeletal muscle diseases, especially those affecting E-C coupling

    Amphores / Jeanne-Marie Giudicelli-Lainé

    No full text
    Collection : La poésie voilà ; 1Contient une table des matiÚresAvec mode text

    The type 1 cannabinoid receptor is highly expressed in embryonic cortical projection neurons and negatively regulates neurite growth in vitro

    No full text
    International audienceIn the rodent and human embryonic brains, the cerebral cortex and hippocampus transiently express high levels of type 1 cannabinoid receptors (CB 1 Rs), at a developmental stage when these areas are composed mainly of glutamatergic neurons. However, the precise cellular and subcellular localization of CB 1 R expression as well as effects of CB 1 R modulation in this cell population remain largely unknown. We report that, starting from embryonic day 12.5, CB 1 Rs are strongly expressed in both reelin-expressing Cajal-Retzius cells and newly differentiated postmitotic glutamatergic neurons of the mouse telencephalon. CB 1 R protein is localized first to somato-dendritic endosomes and at later developmental stages it localizes mostly to developing axons. In young axons, CB 1 Rs are localized both to the axolemma and to large, often multivesicular endosomes. Acute maternal injection of agonist CP-55940 results in the relocation of receptors from axons to somato-dendritic endosomes, indicating the functional competence of embryonic CB 1 Rs. The adult phenotype of CB 1 R expression is established around postnatal day 5. By using pharmacological and mutational modulation of CB 1 R activity in isolated cultured rat hippocampal neurons, we also show that basal activation of CB 1 R acts as a negative regulatory signal for dendritogenesis, dendritic and axonal outgrowth, and branching. Together, the overall negative regulatory role in neurite development suggests that embryonic CB 1 R signaling may participate in the correct establishment of neuronal connectivity and suggests a possible mechanism for the development of reported glutamatergic dysfunction in the offspring following maternal cannabis consumption

    A simple shortcut for observing unroofed cells by either TEM or SEM

    No full text
    DOI: 10.1002/9783527808465.EMC2016.5846International audienceThe “unroofing” technique has been successfully used to observe the cytoplasmic side of the plasma membrane (PM) using either light or electron microscopy. Combined to transmission electron microscopy (TEM), it is an invaluable method to reveal the composition of the PM and to directly observe macromolecular complexes including the cytoskeleton and endocytic membrane invaginations. This method has been optimized over decades to preserve membranes close to their native states by the combination of quick freezing of exposed membranes, followed by deep etching and rotary replication (the so-called “QF-DE-RR” technique). However, a serious setback in implementing unroofing combined with QF-DE-RR stems from the necessity to use complicated apparatus, such as quick freezing and freeze-fracturing devices, along with strong expertise to handle them. Moreover, the technical complexity renders these techniques time consuming and reduces the number of samples that can be processed simultaneously. Here, we present a simple and straightforward protocol for observation of the cytoplasmic side of plasma membrane which only requires chemical treatment of samples prior to replication This method has been optimized towards sample preparation at room temperature, chemical fixation, dehydration, solvent drying and sequential metal coating. Moreover, this technique is easily amenable to higher throughput. We compared either TEM or high resolution SEM analysis of unroofed membranes from adherent cells and show the advantages and disadvantages of each technique towards visualization of the cytoskeleton and different endocytic structures such as clathrin coated pits and caveolae

    Dystrophin restoration therapy improves both the reduced excitability and the force drop induced by lengthening contractions in dystrophic mdx skeletal muscle

    Get PDF
    International audienceBackgroundThe greater susceptibility to contraction-induced skeletal muscle injury (fragility) is an important dystrophic feature and tool for testing preclinic dystrophin-based therapies for Duchenne muscular dystrophy. However, how these therapies reduce the muscle fragility is not clear.MethodsTo address this question, we first determined the event(s) of the excitation-contraction cycle which is/are altered following lengthening (eccentric) contractions in the mdx muscle.ResultsWe found that the immediate force drop following lengthening contractions, a widely used measure of muscle fragility, was associated with reduced muscle excitability. Moreover, the force drop can be mimicked by an experimental reduction in muscle excitation of uninjured muscle. Furthermore, the force drop was not related to major neuromuscular transmission failure, excitation-contraction uncoupling, and myofibrillar impairment. Secondly, and importantly, the re-expression of functional truncated dystrophin in the muscle of mdx mice using an exon skipping strategy partially prevented the reductions in both force drop and muscle excitability following lengthening contractions.ConclusionWe demonstrated for the first time that (i) the increased susceptibility to contraction-induced muscle injury in mdx mice is mainly attributable to reduced muscle excitability; (ii) dystrophin-based therapy improves fragility of the dystrophic skeletal muscle by preventing reduction in muscle excitability
    • 

    corecore