238 research outputs found

    Third-order nonlinear optical properties of stacked bacteriochlorophylls in bacterial photosynthetic light-harvesting proteins

    Full text link
    Enhancement of the nonresonant second order molecular hyperpolarizabilities {gamma} were observed in stacked macrocyclic molecular systems, previously in a {micro}-oxo silicon phthalocyanine (SiPcO) monomer, dimer and trimer series, and now in bacteriochlorophyll a (BChla) arrays of light harvesting (LH) proteins. Compared to monomeric BChla in a tetrahydrofuran (THF) solution, the <{gamma}> for each macrocycle was enhanced in naturally occurring stacked macrocyclic molecular systems in the bacterial photosynthetic LH proteins where BChla`s are arranged in tilted face-to-face arrays. In addition, the {gamma} enhancement is more significant in B875 of LH1 than in B850 in LH2. Theoretical modeling of the nonresonant {gamma} enhancement using simplified molecular orbitals for model SiPcO indicated that the energy level of the two photon state is crucial to the {gamma} enhancement when a two photon process is involved, whereas the charge transfer between the monomers is largely responsible when one photon near resonant process is involved. The calculated results can be extended to {gamma} enhancement in B875 and B850 arrays, suggesting that BChla in B875 are more strongly coupled than in B850. In addition, a 50--160 fold increase in <{gamma}> for the S{sub 1} excited state of relative to S{sub 0} of bacteriochlorophyll in vivo was observed which provides an alternative method for probing excited state dynamics and a potential application for molecular switching

    Genome editing to the rescue: sustainably feeding 10 billion global human population

    Get PDF
    Modern animal breeding strategies based on population genetics, molecular tools, artificial insemination, embryo transfer and related technologies have contributed to significant increases in the performance of domestic animals, and are the basis for a regular supply of high quality animal derived food at acceptable prices. However, the current strategy of marker- assisted selection and breeding of animals to introduce novel traits over multiple generations is too pedestrian in responding to unprecedented challenges such as climate change, global pandemics, and feeding an anticipated 33% increase in global population in the next three decades. Here, we propose site-specific genome editing technologies as a basis for “directed” or “rational selection” of agricultural traits. The animal science community envisions genome editing as an essential tool in addressing critical priorities for global food security and environmental sustainability, and seeks additional funding support for development and implementation of these technologies for maximum societal benefit

    Monoolein Lipid Phases as Incorporation and Enrichment Materials for Membrane Protein Crystallization

    Get PDF
    The crystallization of membrane proteins in amphiphile-rich materials such as lipidic cubic phases is an established methodology in many structural biology laboratories. The standard procedure employed with this methodology requires the generation of a highly viscous lipidic material by mixing lipid, for instance monoolein, with a solution of the detergent solubilized membrane protein. This preparation is often carried out with specialized mixing tools that allow handling of the highly viscous materials while minimizing dead volume to save precious membrane protein sample. The processes that occur during the initial mixing of the lipid with the membrane protein are not well understood. Here we show that the formation of the lipidic phases and the incorporation of the membrane protein into such materials can be separated experimentally. Specifically, we have investigated the effect of different initial monoolein-based lipid phase states on the crystallization behavior of the colored photosynthetic reaction center from Rhodobacter sphaeroides. We find that the detergent solubilized photosynthetic reaction center spontaneously inserts into and concentrates in the lipid matrix without any mixing, and that the initial lipid material phase state is irrelevant for productive crystallization. A substantial in-situ enrichment of the membrane protein to concentration levels that are otherwise unobtainable occurs in a thin layer on the surface of the lipidic material. These results have important practical applications and hence we suggest a simplified protocol for membrane protein crystallization within amphiphile rich materials, eliminating any specialized mixing tools to prepare crystallization experiments within lipidic cubic phases. Furthermore, by virtue of sampling a membrane protein concentration gradient within a single crystallization experiment, this crystallization technique is more robust and increases the efficiency of identifying productive crystallization parameters. Finally, we provide a model that explains the incorporation of the membrane protein from solution into the lipid phase via a portal lamellar phase

    The polycomb group protein EZH2 is involved in progression of prostate cancer

    Full text link
    Prostate cancer is a leading cause of cancer-related death in males and is second only to lung cancer. Although effective surgical and radiation treatments exist for clinically localized prostate cancer, metastatic prostate cancer remains essentially incurable. Here we show, through gene expression profiling(1), that the polycomb group protein enhancer of zeste homolog 2 (EZH2)(2,3) is overexpressed in hormone-refractory, metastatic prostate cancer. Small interfering RNA (siRNA) duplexes(4) targeted against EZH2 reduce the amounts of EZH2 protein present in prostate cells and also inhibit cell proliferation in vitro. Ectopic expression of EZH2 in prostate cells induces transcriptional repression of a specific cohort of genes. Gene silencing mediated by EZH2 requires the SET domain and is attenuated by inhibiting histone deacetylase activity. Amounts of both EZH2 messenger RNA and EZH2 protein are increased in metastatic prostate cancer; in addition, clinically localized prostate cancers that express higher concentrations of EZH2 show a poorer prognosis. Thus, dysregulated expression of EZH2 may be involved in the progression of prostate cancer, as well as being a marker that distinguishes indolent prostate cancer from those at risk of lethal progression.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62896/1/nature01075.pd

    The development of cross-cultural recognition of vocal emotion during childhood and adolescence

    Get PDF
    Humans have an innate set of emotions recognised universally. However, emotion recognition also depends on socio-cultural rules. Although adults recognise vocal emotions universally, they identify emotions more accurately in their native language. We examined developmental trajectories of universal vocal emotion recognition in children. Eighty native English speakers completed a vocal emotion recognition task in their native language (English) and foreign languages (Spanish, Chinese, and Arabic) expressing anger, happiness, sadness, fear, and neutrality. Emotion recognition was compared across 8-to-10, 11-to-13-year-olds, and adults. Measures of behavioural and emotional problems were also taken. Results showed that although emotion recognition was above chance for all languages, native English speaking children were more accurate in recognising vocal emotions in their native language. There was a larger improvement in recognising vocal emotion from the native language during adolescence. Vocal anger recognition did not improve with age for the non-native languages. This is the first study to demonstrate universality of vocal emotion recognition in children whilst supporting an “in-group advantage” for more accurate recognition in the native language. Findings highlight the role of experience in emotion recognition, have implications for child development in modern multicultural societies and address important theoretical questions about the nature of emotions

    Mimicry of Food Intake: The Dynamic Interplay between Eating Companions

    Get PDF
    Numerous studies have shown that people adjust their intake directly to that of their eating companions; they eat more when others eat more, and less when others inhibit intake. A potential explanation for this modeling effect is that both eating companions' food intake becomes synchronized through processes of behavioral mimicry. No study, however, has tested whether behavioral mimicry can partially account for this modeling effect. To capture behavioral mimicry, real-time observations of dyads of young females having an evening meal were conducted. It was assessed whether mimicry depended on the time of the interaction and on the person who took the bite. A total of 70 young female dyads took part in the study, from which the total number of bites (N = 3,888) was used as unit of analyses. For each dyad, the total number of bites and the exact time at which each person took a bite were coded. Behavioral mimicry was operationalized as a bite taken within a fixed 5-second interval after the other person had taken a bite, whereas non-mimicked bites were defined as bites taken outside the 5-second interval. It was found that both women mimicked each other's eating behavior. They were more likely to take a bite of their meal in congruence with their eating companion rather than eating at their own pace. This behavioral mimicry was found to be more prominent at the beginning than at the end of the interaction. This study suggests that behavioral mimicry may partially account for social modeling of food intake
    • …
    corecore