10 research outputs found
Lysosomes at the crossroads between CDK4 and mTOR pathway
Cancer is the name given to a group of related diseases characterized by uncontrolled cell growth and proliferation. In this project, we focused on the cell cycle regulator Cyclin-dependent kinase 4 (CDK4), which contributes to cell proliferation. Since this protein is commonly deregulated in cancer, CDK4 inhibitors have become a useful therapeutic tool for cancer treatment. The function of this protein is not limited to the control of the cell cycle; CDK4 also participates in the control of metabolism, always favoring anabolism and repressing catabolism. However, the exact mechanism by which CDK4 controls cell metabolism is not yet elucidated. It has been recently shown that CDK4 cross-talks with the master regulator of cell growth and metabolism, mammalian target of rapamycin (mTOR). This protein has also been effectively targeted in cancer treatments, since it is commonly hyperactive in cancer cells to maintain protein synthesis, cell growth and other anabolic processes. mTOR functions as two complexes: mTOR complex I (mTORC1) and mTOR complex II (mTORC2). Lysosomes, the main degradative organelles of the cell, are crucial for mTORC1 activation; mTORC1 is recruited to the surface of these organelles in response to extrinsic amino acids, or amino acids originated by the lysosomal degradation of macromolecules.
Here, we show that, on one hand, CDK4 phosphorylates FLCN, a regulator of mTORC1 translocation to the lysosomal surface, thus facilitating mTORC1 activation. On the other hand, we demonstrate that CDK4 promotes lysosomal degradation, which also results in mTORC1 activation. Finally, and most importantly for cancer therapy, we take advantage of this novel function of CDK4 to propose a new therapeutic strategy to treat triple-negative breast cancer (TNBC). We combined a CDK4 inhibitor, which impairs lysosomal function, with an inducer of autophagy (a degradative process in the cell in which lysosomal function is required) to trigger cancer cell death.
Overall, this project describes a novel role for CDK4 in the control of lysosomal biology and the mTOR pathway in cancer cells, and proposes a promising therapeutic strategy for cancer treatment
Three-dimensional-printed patient-specific instrumentation is an accurate tool to reproduce femoral bone tunnels in multiple-ligament knee injuries
Altres ajuts: acords transformatius de la UABMultiple-ligament knee reconstruction techniques often involve the creation of several bone tunnels for various reconstruction grafts. A critical step in this procedure is to avoid short tunnels or convergences among them. Currently, no specific template guide to reproduce these angulations has been reported in the literature, and the success of the technique still depends on the experience of the surgeon. The aim of this study is to analyze the accuracy and reliability of 3D-printed patient-specific instrumentation (PSI) for lateral and medial anatomical knee reconstructions. Ten cadaveric knees were scanned by computed tomography (CT). Using specific computer software, anatomical femoral attachments were identified: (1) on the lateral side the lateral collateral ligament (LCL) and the popliteal tendon (PT) and (2) on the medial side the medial collateral ligament (MCL) and the posterior oblique ligament (POL). Four bone tunnels were planned for each knee, and PSI with different directions were designed as templates to reproduce the planned tunnels during surgery. Twenty 3D-printed PSI were used: ten were tailored to the medial side for reconstructing MCL and POL tunnels, and the other ten were tailored to the lateral side for reconstructing LCL and PT tunnels. Postoperative CT scans were made for each cadaveric knee. The accuracy of the use of 3D-printed PSI was assessed by superimposing post-operative CT images onto pre-operative images and analyzing the deviation of tunnels performed based on the planning, specifically the entry point and the angular deviations. The median entry point deviations for the tunnels were as follows: LCL tunnel, 1.88 mm (interquartile range (IQR) 2.2 mm); PT tunnel, 2.93 mm (IQR 1.17 mm); MCL tunnel, 1.93 mm (IQR 4.26 mm); and POL tunnel, 2.16 mm (IQR 2.39). The median angular deviations for the tunnels were as follows: LCL tunnel, 2.42° (IQR 6.49°); PT tunnel, 4.15° (IQR 6.68); MCL tunnel, 4.50° (IQR 6.34°); and POL tunnel, 4.69° (IQR 3.1°). No statistically significant differences were found in either the entry point or the angular deviation among the different bone tunnels. The use of 3D-printed PSI for lateral and medial anatomical knee reconstructions provides accurate and reproducible results and may be a promising tool for use in clinical practice
Correction to: Cluster identification, selection, and description in Cluster randomized crossover trials: the PREP-IT trials
An amendment to this paper has been published and can be accessed via the original article
Integrated 3D printing solution to mitigate shortages of airway consumables and personal protective equipment during the COVID-19 pandemic
Background: To cope with shortages of equipment during the COVID-19 pandemic, we established a nonprofit end-to-end system to identify, validate, regulate, manufacture, and distribute 3D-printed medical equipment. Here we describe the local and global impact of this system. Methods: Together with critical care experts, we identified potentially lacking medical equipment and proposed solutions based on 3D printing. Validation was based on the ISO 13485 quality standard for the manufacturing of customized medical devices. We posted the design files for each device on our website together with their technical and printing specifications and created a supply chain so that hospitals from our region could request them. We analyzed the number/type of items, petitioners, manufacturers, and catalogue views. Results: Among 33 devices analyzed, 26 (78·8%) were validated. Of these, 23 (88·5%) were airway consumables and 3 (11·5%) were personal protective equipment. Orders came from 19 (76%) hospitals and 6 (24%) other healthcare institutions. Peak production was reached 10 days after the catalogue was published. A total of 22,135 items were manufactured by 59 companies in 18 sectors; 19,212 items were distributed to requesting sites during the busiest days of the pandemic. Our online catalogue was also viewed by 27,861 individuals from 113 countries. Conclusions: 3D printing helped mitigate shortages of medical devices due to problems in the global supply chain
COVID-19 in hospitalized HIV-positive and HIV-negative patients : A matched study
CatedresObjectives: We compared the characteristics and clinical outcomes of hospitalized individuals with COVID-19 with [people with HIV (PWH)] and without (non-PWH) HIV co-infection in Spain during the first wave of the pandemic. Methods: This was a retrospective matched cohort study. People with HIV were identified by reviewing clinical records and laboratory registries of 10 922 patients in active-follow-up within the Spanish HIV Research Network (CoRIS) up to 30 June 2020. Each hospitalized PWH was matched with five non-PWH of the same age and sex randomly selected from COVID-19@Spain, a multicentre cohort of 4035 patients hospitalized with confirmed COVID-19. The main outcome was all-cause in-hospital mortality. Results: Forty-five PWH with PCR-confirmed COVID-19 were identified in CoRIS, 21 of whom were hospitalized. A total of 105 age/sex-matched controls were selected from the COVID-19@Spain cohort. The median age in both groups was 53 (Q1-Q3, 46-56) years, and 90.5% were men. In PWH, 19.1% were injecting drug users, 95.2% were on antiretroviral therapy, 94.4% had HIV-RNA < 50 copies/mL, and the median (Q1-Q3) CD4 count was 595 (349-798) cells/μL. No statistically significant differences were found between PWH and non-PWH in number of comorbidities, presenting signs and symptoms, laboratory parameters, radiology findings and severity scores on admission. Corticosteroids were administered to 33.3% and 27.4% of PWH and non-PWH, respectively (P = 0.580). Deaths during admission were documented in two (9.5%) PWH and 12 (11.4%) non-PWH (P = 0.800). Conclusions: Our findings suggest that well-controlled HIV infection does not modify the clinical presentation or worsen clinical outcomes of COVID-19 hospitalization
Implementing stakeholder engagement to explore alternative models of consent: An example from the PREP-IT trials
Introduction: Cluster randomized crossover trials are often faced with a dilemma when selecting an optimal model of consent, as the traditional model of obtaining informed consent from participant's before initiating any trial related activities may not be suitable. We describe our experience of engaging patient advisors to identify an optimal model of consent for the PREP-IT trials. This paper also examines surrogate measures of success for the selected model of consent. Methods: The PREP-IT program consists of two multi-center cluster randomized crossover trials that engaged patient advisors to determine an optimal model of consent. Patient advisors and stakeholders met regularly and reached consensus on decisions related to the trial design including the model for consent. Patient advisors provided valuable insight on how key decisions on trial design and conduct would be received by participants and the impact these decisions will have. Results: Patient advisors, together with stakeholders, reviewed the pros and cons and the requirements for the traditional model of consent, deferred consent, and waiver of consent. Collectively, they agreed upon a deferred consent model, in which patients may be approached for consent after their fracture surgery and prior to data collection. The consent rate in PREP-IT is 80.7%, and 0.67% of participants have withdrawn consent for participation. Discussion: Involvement of patient advisors in the development of an optimal model of consent has been successful. Engagement of patient advisors is recommended for other large trials where the traditional model of consent may not be optimal