1,536 research outputs found

    Understanding the role of social situations on continuance participation intention in online communities: an empirical perspective

    Get PDF
    In recent years, the mushrooming development of Online Communities (OCs) has ushered a new paradigm of research for organizational sustainability in IS. In essence, the growth and survival of an online community relies predominantly on the continuous participation of its members. Given that the emergence of OCs may decay or even diminish due to the lack of consistent involvement of members, it is of paramount importance to fathom how to retain and entice members of OCs in terms of their continuous participation in the online platform. Extant studies have focused mostly on personal belief constructs and subjective norm constructs to study users' continuous behavior. However, the important role of social situations has not been sufficiently explored and investigated in IS, particularly in the emerging context of OCs. Drawing on the Triandis model, this study proposes a research model incorporating social situations as the moderator on the continuance participation intention in OCs. We collected data from two large OCs to examine whether congruence exists between situation perceptions and situation reactions. The empirical results show that social situations play an important role in determining the strength of the relationships between affect, social factors, and perceived consequences and the continuance intention in OCs

    Experimental study on dynamic deformation properties of muck soil under low frequency cyclic loading

    Get PDF
    A series of dynamic triaxial tests were performed to investigate the dynamic deformation properties of the muck soil, in the Pearl River Delta region of Shenzhen, China, under different consolidation ratios, loading frequencies and cyclic stress with SPAX-2000 triaxial testing system. The results showed that the initial stress-strain hysteresis curve of the muck soil under the low-frequency cyclic loading developed rapidly and the curve shape changes from sparse to tight and to slightly sparse. The cumulative plastic strain of muck soil increased nonlinearly with the dynamic stress amplitude, and there was a critical dynamic stress. As the dynamic stress amplitude reached its critical value, the strain increased sharply and the soil microstructure was destroyed. There was a frequency threshold between 0.25 Hz and 0.5 Hz, and the cumulative plastic strain development mode was from stable model to over-destructive model. The stiffness of the muck decreased gradually, and the plastic deformation increased as the number of cycles increased. Therefore, the lower the loading frequency developed, the greater the plastic deformation would be. The dynamic elastic modulus decreased as the plastic deformation increased, while the dynamic elastic modulus increased as the consolidation stress increased. Moreover, the empirical formulas of dynamic elastic modulus and plastic strain index were established with the consolidation stress ratio as the parameter, and the validity was verified by experimental data

    Multiple Parton Scattering in Nuclei: Twist-Four Nuclear Matrix Elements and Off-Forward Parton Distributions

    Get PDF
    Multiple parton scatterings inside a large nucleus generally involve higher-twist nuclear parton matrix elements. The gluon bremsstrahlung induced by multiple scattering depends not only on direct parton matrix elements but also on momentum-crossed ones, due to the Landau-Pomeranchuk-Migdal interference effect. We show that both types of twist-four nuclear parton matrix elements can be factorized approximately into the product of twist-two nucleon matrix elements in the limit of extremely large nuclei, A→∞A\to \infty, as assumed in previous studies. Due to the correlative nature of the twist-four matrix elements under consideration, it is actually the off-forward parton distributions that appear naturally in this decomposition, rather than the ordinary diagonal distributions probed in deeply-inelastic scattering. However, we argue that the difference between these two distribution classes is small in certain kinematic regimes. In these regions, the twist-four nuclear parton matrix elements are evaluated numerically and compared to the factorized form for different nuclear sizes within a schematic model of the two-nucleon correlation function. The nuclear size dependence is found to be A4/3A^{4/3} in the limit of large AA, as expected. We find that the factorization is reasonably good when the momentum fraction carried by the gluon field is moderate. The deviation can be more than a factor of 2, however, for small gluon momentum fractions, where the gluon distribution is very large.Comment: 23 pages, 7 figures, minor correction

    Molecular dynamics simulation of persistent slip bands formation in nickel-base superalloys

    Get PDF
    Persistent slip band (PSB) is an important and typical microstructure generated during fatigue crack initiation. Intensive work has been done to investigate the mechanisms of the formation of persistent slip bands since the 1950s when Wadsworth[1] observed the fatigue fracture in copper. Simulations have indicated that PSBs formation during fatigue crack initiation is related to the dislocation driving force and interaction. In this paper, a molecular dynamics (MD) simulation associated with embedded atom model (EAM) is applied to the PSBs formation in nickel-base superalloys with different microstructure and temperature under tensiletensile loadings. Five MD models with different microstructure (pure γ phase and γ/γ′ phase), grain orientation ([1 0 0][0 1 0][0 0 1] and [1 1 1][1 ¯ 0 1][1 2 ¯ 1]) and simulation temperature (300 K, 600 K, 900 K) were built up in these simulations. Our results indicated that within the γ phase by massive dislocations, pile-up and propagation which can penetrate the grain. Also, it is found that the temperature will affect the material fatigue performance and blur PSBs appearance. The simulation results are in strong agreement with published experimental test result. This simulation is based on the work[2]. The highlights of the article include: 1) investigation of the PSB formation via molecular dynamics simulation with three different parameters, 2) conduct of a new deformation and velocity combination controlled simulation for the PSB formation, 3) high-performance computing of PSB formation, and 4) systematic analysis of the PSB formation at the atomic scale in which the dislocation plays a critical role

    Studies of Prototype CsI(Tl) Crystal Scintillators for Low-Energy Neutrino Experiments

    Full text link
    Crystal scintillators provide potential merits for the pursuit of low-energy low-background experiments. A CsI(Tl) scintillating crystal detector is being constructed to study low-energy neutrino physics at a nuclear reactor, while projects are underway to adopt this technique for dark matter searches. The choice of the geometrical parameters of the crystal modules, as well as the optimization of the read-out scheme, are the results of an R&D program. Crystals with 40 cm in length were developed. The detector requirements and the achieved performance of the prototypes are presented. Future prospects for this technique are discussed.Comment: 32 pages, 14 figure

    Identification of blood biomarkers of rheumatoid arthritis by transcript profiling of peripheral blood mononuclear cells from the rat collagen-induced arthritis model

    Get PDF
    Rheumatoid arthritis (RA) is a chronic debilitating autoimmune disease that results in joint destruction and subsequent loss of function. To better understand its pathogenesis and to facilitate the search for novel RA therapeutics, we profiled the rat model of collagen-induced arthritis (CIA) to discover and characterize blood biomarkers for RA. Peripheral blood mononuclear cells (PBMCs) were purified using a Ficoll gradient at various time points after type II collagen immunization for RNA preparation. Total RNA was processed for a microarray analysis using Affymetrix GeneChip technology. Statistical comparison analyses identified differentially expressed genes that distinguished CIA from control rats. Clustering analyses indicated that gene expression patterns correlated with laboratory indices of disease progression. A set of 28 probe sets showed significant differences in expression between blood from arthritic rats and that from controls at the earliest time after induction, and the difference persisted for the entire time course. Gene Ontology comparison of the present study with previous published murine microarray studies showed conserved Biological Processes during disease induction between the local joint and PBMC responses. Genes known to be involved in autoimmune response and arthritis, such as those encoding Galectin-3, Versican, and Socs3, were identified and validated by quantitative TaqMan RT-PCR analysis using independent blood samples. Finally, immunoblot analysis confirmed that Galectin-3 was secreted over time in plasma as well as in supernatant of cultured tissue synoviocytes of the arthritic rats, which is consistent with disease progression. Our data indicate that gene expression in PBMCs from the CIA model can be utilized to identify candidate blood biomarkers for RA

    Quantitative study of peripapillary retinal nerve fiber layer thickness and peripapillary vessel density in patients with different stages of Parkinson’s disease

    Get PDF
    AIM: To observe the changes in the thickness of peripapillary retinal nerve fiber layer (pRNFL) and peripapillary vessel density (pVD) in patients with different stages of Parkinson's disease (PD). METHODS: Totally 47 patients (47 eyes) with primary PD were divided into the mild group and the moderate-to-severe group according to Hoehn & Yahr (H&Y) stage. Among them, there were 27 cases (27 eyes) in mild group and 20 cases (20 eyes) in moderate-to-severe group. And 20 cases (20 eyes) who were included in the control group were healthy people who came to our hospital for health screening at the same time. All participants underwent optical coherence tomography angiography (OCTA) examinations. The pRNFL thickness, total vessel density (tVD) and capillary vessel density (cVD) of the optic disc in average, superior half, inferior half, superior nasal (SN), nasal superior (NS), nasal inferior (NI), inferior nasal (IN), inferior temporal (IT), temporal inferior (TI), temporal superior (TS), and superior temporal (ST) were measured. One-way ANOVA was used to compare the differences of optic disc parameters among the three groups, and Pearson and Spearman correlations were used to analyze the correlation between pRNFL, pVD and the disease duration, H&Y stage and UPDRS-III score in patients with PD, respectively. RESULTS: There were significant differences in pRNFL thickness in average, superior half, inferior half, SN, NS, IN, IT and ST quadrants among the three groups (P<0.05). In PD group, the pRNFL thickness in average, superior half, inferior half, NS and IT quadrants were negatively correlated with H&Y stage and UPDRS-III score, respectively (P<0.05). There were statistically significant differences in the cVD of whole image, inferior half, NI and TS quadrants, the tVD of the whole image, inferior half, and peripapillary among the three groups (P<0.05). In PD group, the tVD of whole image and the cVD of NI and TS quadrants were negatively correlated with the H&Y stage, respectively (P<0.05); the cVD of TS quadrant was negatively correlated with UPDRS-III score (P<0.05). CONCLUSION: The thickness of pRNFL in PD patients is significantly decreased, and it is negatively correlated with H&Y stage and UPDRS-III score. With the increase of the severity of the disease, the pVD parameters in PD patients increase at first in the mild group, and then decrease in the moderate-to-severe group, and negatively correlate with H&Y stage and UPDRS-III score
    • …
    corecore