31,204 research outputs found

    Orbital and valley state spectra of a few-electron silicon quantum dot

    Full text link
    Understanding interactions between orbital and valley quantum states in silicon nanodevices is crucial in assessing the prospects of spin-based qubits. We study the energy spectra of a few-electron silicon metal-oxide-semiconductor quantum dot using dynamic charge sensing and pulsed-voltage spectroscopy. The occupancy of the quantum dot is probed down to the single-electron level using a nearby single-electron transistor as a charge sensor. The energy of the first orbital excited state is found to decrease rapidly as the electron occupancy increases from N=1 to 4. By monitoring the sequential spin filling of the dot we extract a valley splitting of ~230 {\mu}eV, irrespective of electron number. This indicates that favorable conditions for qubit operation are in place in the few-electron regime.Comment: 4 figure

    Nonlinear robust controller design for multi-robot systems with unknown payloads

    Get PDF
    This work is concerned with the control problem of a multi-robot system handling a payload with unknown mass properties. Force constraints at the grasp points are considered. Robust control schemes are proposed that cope with the model uncertainty and achieve asymptotic path tracking. To deal with the force constraints, a strategy for optimally sharing the task is suggested. This strategy basically consists of two steps. The first detects the robots that need help and the second arranges that help. It is shown that the overall system is not only robust to uncertain payload parameters, but also satisfies the force constraints

    Self-consistent nonlinear kinetic simulations of the anomalous Doppler instability of suprathermal electrons in plasmas

    Get PDF
    Suprathermal tails in the distributions of electron velocities parallel to the magnetic field are found in many areas of plasma physics, from magnetic confinement fusion to solar system plasmas. Parallel electron kinetic energy can be transferred into plasma waves and perpendicular gyration energy of particles through the anomalous Doppler instability (ADI), provided that energetic electrons with parallel velocities v ≄ (ω + Ωce )/k are present; here Ωce denotes electron cyclotron frequency, ω the wave angular frequency and k the component of wavenumber parallel to the magnetic field. This phenomenon is widely observed in tokamak plasmas. Here we present the first fully self-consistent relativistic particle-in-cell simulations of the ADI, spanning the linear and nonlinear regimes of the ADI. We test the robustness of the analytical theory in the linear regime and follow the ADI through to the steady state. By directly evaluating the parallel and perpendicular dynamical contributions to j · E in the simulations, we follow the energy transfer between the excited waves and the bulk and tail electron populations for the first time. We find that the ratio Ωce /(ωpe + Ωce ) of energy transfer between parallel and perpendicular, obtained from linear analysis, does not apply when damping is fully included, when we find it to be ωpe /(ωpe + Ωce ); here ωpe denotes the electron plasma frequency. We also find that the ADI can arise beyond the previously expected range of plasma parameters, in particular when Ωce > ωpe . The simulations also exhibit a spectral feature which may correspond to observations of suprathermal narrowband emission at ωpe detected from low density tokamak plasmas

    Charm quenching in heavy-ion collisions at the LHC

    Get PDF
    D-meson suppression in Pb-Pb collisions at the LHC due to charm quark in-medium energy loss is estimated within a model that describes the available quenching measurements at RHIC. The result is compared to that previously published by the author. The expected sensitivity of the ALICE experiment for studying charm energy loss via fully-reconstructed D^0-meson decays is also presented.Comment: 8 pages, 3 figures. To appear in the proceedings of Hot Quarks 2004: Workshop for Young Scientists on the Physics of Ultrarelativistic Nucleus-Nucleus Collisions, Taos Valley, New Mexico, 18-24 July 2004. Submitted to J. Phys.

    Lifespan estimates for the compressible Euler equations with damping via Orlicz spaces techniques

    Get PDF
    In this paper we are interested in the upper bound of the lifespan estimate for the compressible Euler system with time dependent damping and small initial perturbations. We employ some techniques from the blow-up study of nonlinear wave equations. The novelty consists in the introduction of tools from the Orlicz spaces theory to handle the nonlinear term emerging from the pressure p≡p(ρ)p \equiv p(\rho), which admits different asymptotic behavior for large and small values of ρ−1\rho-1, being ρ\rho the density. Hence we can establish, in dimensions n∈{2,3}n\in\{2,3\}, unified upper bounds of the lifespan estimate depending only on the dimension nn and on the damping strength, and independent of the adiabatic index Îł>1\gamma>1. We conjecture our results to be optimal. The method employed here not only improves the known upper bounds of the lifespan for n∈{2,3}n\in\{2,3\}, but has potential application in the study of related problems.FJC2021-046835-I; JSPS Fellowshi

    Maternal and infant infections stimulate a rapid leukocyte response in breastmilk

    Get PDF
    Breastmilk protects infants against infections; however, specific responses of breastmilk immune factors to different infections of either the mother or the infant are not well understood. Here, we examined the baseline range of breastmilk leukocytes and immunomodulatory biomolecules in healthy mother/infant dyads and how they are influenced by infections of the dyad. Consistent with a greater immunological need in the early postpartum period, colostrum contained considerable numbers of leukocytes (13–70% out of total cells) and high levels of immunoglobulins and lactoferrin. Within the first 1–2 weeks postpartum, leukocyte numbers decreased significantly to a low baseline level in mature breastmilk (0–2%) (P\u3c0.001). This baseline level was maintained throughout lactation unless the mother and/or her infant became infected, when leukocyte numbers significantly increased up to 94% leukocytes out of total cells (P\u3c0.001). Upon recovery from the infection, baseline values were restored. The strong leukocyte response to infection was accompanied by a more variable humoral immune response. Exclusive breastfeeding was associated with a greater baseline level of leukocytes in mature breastmilk. Collectively, our results suggest a strong association between the health status of the mother/infant dyad and breastmilk leukocyte levels. This could be used as a diagnostic tool for assessment of the health status of the lactating breast as well as the breastfeeding mother and infant

    Evidence for Strain-Induced Local Conductance Modulations in Single-Layer Graphene on SiO_2

    Get PDF
    Graphene has emerged as an electronic material that is promising for device applications and for studying two-dimensional electron gases with relativistic dispersion near two Dirac points. Nonetheless, deviations from Dirac-like spectroscopy have been widely reported with varying interpretations. Here we show evidence for strain-induced spatial modulations in the local conductance of single-layer graphene on SiO_2 substrates from scanning tunneling microscopic (STM) studies. We find that strained graphene exhibits parabolic, U-shaped conductance vs bias voltage spectra rather than the V-shaped spectra expected for Dirac fermions, whereas V-shaped spectra are recovered in regions of relaxed graphene. Strain maps derived from the STM studies further reveal direct correlation with the local tunneling conductance. These results are attributed to a strain-induced frequency increase in the out-of-plane phonon mode that mediates the low-energy inelastic charge tunneling into graphene

    Relationship between blood remifentanil concentration and stress hormone levels during pneumoperitoneum in patients undergoing laparoscopic cholecystectomy

    Get PDF
    The effect of remifentanil on stress response to surgery is unclear. However, there are not clinical studies investigating the relationship between blood remifentanil concentrations and stress hormones. Therefore, the aim of the present study was to assess the association between blood remifentanil concentrations measured after pneumoperitoneum and cortisol (CORT) or prolactin (PRL) ratio (intraoperative/preoperative value), in patients undergoing laparoscopic cholecystectom

    Heat-like and wave-like lifespan estimates for solutions of semilinear damped wave equations via a Kato's type lemma

    Get PDF
    In this work we consider several semilinear damped wave equations with “subcritical” nonlinearities, focusing on studying lifespan estimates for energy solutions. Our main concern is on equations with scale-invariant damping and mass. By imposing different assumptions on the initial data, we prove lifespan estimates from above, distinguishing between “wave-like” and “heat-like” behaviours. Furthermore, we conjecture logarithmic improvements for the estimates on the “transition surfaces” separating the two behaviours. As a direct consequence, we reorganize the blow-up results and lifespan estimates for the massless case, and we obtain in particular improved lifespan estimates for the one dimensional case, compared to the known results. We also study semilinear wave equations with scattering damping and negative mass term, finding that if the decay rate of the mass term equals to 2, the lifespan estimate coincides with the one in a special case of scale-invariant damped equation. The main tool employed in the proof is a Kato's type lemma, established by iteration argument
    • 

    corecore