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Abstract

In this work we consider several semilinear damped wave equations with “subcritical” nonlinearities, 
focusing on studying lifespan estimates for energy solutions. Our main concern is on equations with scale-
invariant damping and mass. By imposing different assumptions on the initial data, we prove lifespan 
estimates from above, distinguishing between “wave-like” and “heat-like” behaviours. Furthermore, we 
conjecture logarithmic improvements for the estimates on the “transition surfaces” separating the two be-
haviours. As a direct consequence, we reorganize the blow-up results and lifespan estimates for the massless 
case, and we obtain in particular improved lifespan estimates for the one dimensional case, compared to the 
known results.

We also study semilinear wave equations with scattering damping and negative mass term, finding that if 
the decay rate of the mass term equals to 2, the lifespan estimate coincides with the one in a special case of 
scale-invariant damped equation.

The main tool employed in the proof is a Kato’s type lemma, established by iteration argument.
© 2020 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

The aim of the present work is to study blow-up phenomena and lifespan estimates for solu-
tions of Cauchy problem with small data for several semilinear damped wave models. Indeed, 
we mainly concern about semilinear wave equations with the scale-invariant damping, mass and 
power-nonlinearity⎧⎨⎩utt − �u + μ1

1 + t
ut + μ2

(1 + t)2 u = |u|p, in Rn × (0, T ),

u(x,0) = εf (x), ut (x,0) = εg(x), x ∈ Rn,

(1.1)

where μ1, μ2 ∈ R, p > 1, n ∈ N , T > 0 and ε > 0 is a “small” parameter. In particular, we are 
interested in exploring a competition between so-called “heat-like” and “wave-like” behaviour 
of the solutions, which concerns not only critical exponents, but also lifespan estimates, in a way 
that we will clarify later.

Let us firstly denote energy and weak solutions of our problem (1.1).

Definition 1. We say that u is an energy solution of (1.1) over [0, T ) if

u ∈ C([0, T ),H 1(Rn)) ∩ C1([0, T ),L2(Rn)) ∩ C((0, T ),L
p
loc(R

n))

satisfies u(x, 0) = εf (x) in H 1(Rn), ut (x, 0) = εg(x) in L2(Rn) and
11576



N.-A. Lai, N.M. Schiavone and H. Takamura Journal of Differential Equations 269 (2020) 11575–11620
∫
Rn

ut (x, t)φ(x, t)dx −
∫
Rn

εg(x)φ(x,0)dx

+
t∫

0

ds

∫
Rn

{−ut (x, s)φt (x, s) + ∇u(x, s) · ∇φ(x, s)}dx

+
t∫

0

ds

∫
Rn

μ1

1 + s
ut (x, s)φ(x, s)dx +

t∫
0

ds

∫
Rn

μ2

(1 + s)2 u(x, s)φ(x, s)dx

=
t∫

0

ds

∫
Rn

|u(x, s)|pφ(x, s)dx

(1.2)

for t ∈ [0, T ) and any test function φ ∈ C∞
0 (Rn × [0, T )).

Employing the integration by parts in the above equality and letting t → T , we reach to the 
definition of the weak solution of (1.1), that is

∫
Rn×[0,T )

u(x, s)

{
φtt (x, s) − �φ(x, s) − ∂

∂s

(
μ1

1 + s
φ(x, s)

)
+ μ2

(1 + s)2 φ(x, s)

}
dxds

= ε

∫
Rn

{μ1f (x)φ(x,0) + g(x)φ(x,0) − f (x)φt (x,0)}dx

+
∫

Rn×[0,T )

|u(x, s)|pφ(x, s)dxds.

We recall that the critical exponent pcrit of (1.1) is the smallest exponent pcrit > 1 such 
that, if p > pcrit , there exists a unique global energy solution to the problem, whereas if 1 <
p ≤ pcrit the solution blows up in finite time. In the latter case, one is also interested in finding 
estimates for the lifespan Tε , which is the maximal existence time of the solution, depending on 
the parameter ε.

Our principal model is the one in (1.1), for which we obtain Theorem 2 and Theorem 4, ac-
cording to the different conditions imposed on the initial data. As straightforward consequences, 
we also obtain Theorem 1 and Theorem 3 for the massless case, i.e. the model with μ2 = 0. The 
lifespan estimate in dimension n = 1 in this case is improved, comparing to the known results. 
Moreover, we continue the study of semilinear wave equations with scattering damping, negative 
mass term and power nonlinearity, introduced by the authors in [20,21].

The paper is organized in this way: in the rest of the Introduction, we compare the classical 
models for the heat and wave equations with power-nonlinearity in order to introduce the “heat-
like” and “wave-like” terminology; in Section 2 we sketch the background of the problems under 
consideration and we exhibit our main results, which will be proved in Section 4, exploiting, as 
main tool, a Kato’s type lemma in integral form presented in Section 3.
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1.1. Heat vs. wave

Let us consider the toy-models of the heat and wave equations:{
ut − �u = |u|p,

u(x,0) = εf (x),

{
utt − �u = |u|p,

(u,ut )(x,0) = ε(f, g)(x).

Nowadays the study of these two equations is almost classic: the well-known results include the 
lifespan estimates and the critical exponents, which are the so-called Fujita exponent pF(n) and 
the Strauss exponent pS(n), corresponding to the heat and the wave equation respectively. For 
the purpose of this work, let us define these two exponents for all ν ∈R:

pF (ν) :=
⎧⎨⎩1 + 2

ν
if ν > 0,

+ ∞ if ν ≤ 0,
pS(ν) :=

⎧⎪⎨⎪⎩
ν + 1 + √

ν2 + 10ν − 7

2(ν − 1)
if ν > 1,

+ ∞ if ν ≤ 1.

We remark that

1 < p < pF (ν) =⇒ γF (p, ν) := 2 − ν(p − 1) > 0,

1 < p < pS(ν) =⇒ γS(p, ν) := 2 + (ν + 1)p − (ν − 1)p2 > 0.

In particular, if ν > 0, pF (ν) is the solution of the linear equation γF (p, ν) = 0, whereas if ν > 1, 
pS(ν) is the positive solution of the quadratic equation γS(p, ν) = 0. Although the expression 
γS(p, ν) is well-known in the literature, the introduction of γF (p, ν) is justifyed from the fact 
that γF plays for the heat equation the same role that γS plays for the wave equation, as it emerges 
from the lifespan estimates.

Suppose for simplicity that f , g are non-negative, non-vanishing, compactly supported func-
tions (for different conditions on the initial data, we can have different lifespan estimates, see 
Subsection 2.4). We have that the blow-up results are the ones collected in the following table.

Heat Wave

Critical exponent pcrit pF (n) pS(n)

Subcritical lifespan Tε

for 1 < p < pcrit
∼ ε−2(p−1)/γF (p,n)

∼ ε−(p−1)/γF (p,n−1)

if n = 1 or n = 2, 1 < p < 2
∼ a(ε)

if n = p = 2, ε2a2 log(1 + a) = 1
∼ ε−2p(p−1)/γS (p,n)

if n = 2,2 < p < pS(n) or n ≥ 3

Critical lifespan Tε

for p = pcrit
∼ exp(Cε−(p−1))

∼ exp(Cε−p(p−1))

(the lower bound is open for n ≥ 9 in general)

Here and in the following, we use the notation F � G (respectively F � G) if there exists 
a constant C > 0 independent of ε such that F ≤ CG (respectively F ≥ CG), and the notation 
F ∼ G if F � G and F �G.

For a more detailed story of these results, we refer to the book [6], the doctoral thesis [49], 
the introductions of [13,40–42] and the references therein.
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For the comparison between the heat and wave equations, let us introduce an informal but 
evocative notation to describe the behaviour of the critical exponent and of the lifespan estimates 
in our models. We will call the critical exponent heat-like if it is related to the Fujita exponent, 
i.e. pcrit = pF (ν) for some ν ∈ R, whereas we will call it wave-like if it is related to the Strauss 
exponent, i.e. pcrit = pS(ν) for some ν ∈R.

Similarly, we will say that the lifespan estimate is heat-like if it is related in some way to the 
one of the heat equation, i.e. to the exponent 2(p − 1)/γF (p, ν) in the subcritical case and to 
exp(ε−(p−1)) in the critical one, whereas we will say it wave-like if related to the one of the wave 
equation, i.e. to the exponent 2p(p − 1)/γS(p, ν) in the subcritical case and to exp(ε−p(p−1))

in the critical one. However, we also define a mixed-type behaviour when the lifespan estimate 
is related to 2p(p − 1)/γF (p, ν) in the subcritical case (as we will see in Theorem 3 & 4), to 
remark that the lifespan is longer than the heat-like one, due to the additional p in the exponent.

2. Problems and main results

As stated in the Introduction, this section is devoted to presenting the models under considera-
tion and to stating our results. More precisely, we start to consider the damped wave equation by 
adding the damping term μ/(1 + t)βut to the wave equation, focusing then on the scale-invariant 
case, i.e. setting β = 1. Afterwards, we add also the mass term μ2/(1 + t)2u. In Subsection 2.4, 
we observe that a special condition on the initial data can significantly change the blow-up re-
sults. Finally, in Subsection 2.5 we consider a special wave model with scattering damping and 
negative mass term, the study of which can be essentially reduced to that of the previous models.

2.1. Damped wave equation

Let us proceed by adding the damping term μ/(1 + t)βut to the wave equation, with μ ≥ 0
and β ∈ R, hence we consider the Cauchy problem⎧⎨⎩utt − �u + μ

(1 + t)β
ut = |u|p, in Rn × (0, T ),

u(x,0) = εf (x), ut (x,0) = εg(x), x ∈Rn.

(2.1)

According to the works by Wirth [51–53], in the study of the associated homogeneous problem

⎧⎨⎩u0
t t − �u0 + μ

(1 + t)β
u0

t = 0,

u0(x,0) = f (x), u0
t (x,0) = g(x),

(2.2)

we can classify the damping term depending on the different values of β into four cases. When 
β < 1, the damping term is said to be overdamping and the solution does not decay to zero when 
t → ∞. If −1 ≤ β < 1, the solution behaves like that of the heat equation and we say that the 
damping term is effective. Hence, the term u0

t t in (2.2) has no influence on the behaviour of the 
solution and the Lp − Lq decay estimates of the solution are almost the same as those of the 
heat equation. In contrast, when β > 1, it is known that the solution behaves like that of the wave 
equation, which means that the damping term in (2.2) has no influence on the behaviour of the 
solution. In fact, in this case the solution scatters to that of the free wave equation when t → ∞, 
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and thus we say that we have scattering. Finally, when β = 1, the equation in (2.2) is invariant 
under the scaling

ũ0(x, t) := u0(σx,σ (1 + t) − 1), σ > 0,

and hence we say that the damping term is scale-invariant. In this case the behaviour of the 
solution of (2.2) has been observed to be determined by the value of μ. We summarize all the 
classifications of the damping term in (2.2) in the next table.

Range of β Classification

β ∈ (−∞,−1) overdamping
β ∈ [−1,1) effective
β = 1 scale-invariant
β ∈ (1,∞) scattering

Let us return to problem (2.1), which inherits the above terminology and has very different 
behaviours from case to case. Indeed, in the overdamping case the solution exists globally for 
any p > 1. In the effective case, the problem is heat-like, both in the critical exponent and in 
the lifespan estimates, while in the scattering case the problem seems to be wave-like. Finally, 
the scale-invariant case has an intermediate behaviour, and a competition between heat-like and 
wave-like arises. Before moving to the last case, let us collect in the following two tables some 
global existence and blow-up results for β = 1, at the best of our knowledge.

Global-in-time existence for β = 1

Authors Range of β Dimension n Exponent p

Ikeda, Wakasugi [12] β < −1 n ≥ 1 p > 1

Wakasugi [50] β = −1
n = 1,2
n ≥ 3

p > pF (n)

pF (n) < p < n
n−2

Todorova, Yordanov [43] β = 0
n = 1,2
n ≥ 3

p > pF (n)

pF (n) < p ≤ n
n−2

D’Abbicco, Lucente, Reissig [4]
Nishihara [31]
Lin, Nishihara, Zhai [27]

−1 < β < 1
β = 0

n = 1,2
n ≥ 3

p > pF (n)

pF (n) < p < n+2
n−2

Liu, Wang [30] β > 1 n = 3,4 p > pS(n)

Blow-up in finite time for β = 1

Authors Range of β Exponent p Lifespan Tε

Fujiwara, Ikeda, Wakasugi [7]
Ikeda, Inui [8]

β = −1
1 < p < pF (n)

p = pF (n)

∼ exp(Cε−2(p−1)/γF (p,n))

∼ exp exp(Cε−(p−1))

Li, Zhou [26], Zhang [55]
Todorova, Yordanov [43]
Kirane, Qafsaoui [18]
Ikeda, Ogawa [9], Lai, Zhou [25]
Ikeda, Wakasugi [11], Nishihara [31]
Fujiwara, Ikeda, Wakasugi [7]

β = 0
1 < p < pF (n)

p = pF (n)

∼ ε−2(p−1)/γF (p,n)

∼ exp(Cε−(p−1))
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(continued)

Blow-up in finite time for β = 1

Authors Range of β Exponent p Lifespan Tε

Fujiwara, Ikeda, Wakasugi [7]
Ikeda, Inui [8]
Ikeda, Ogawa [9]
Ikeda, Wakasugi [11]

−1 < β < 1
β = 0

1 < p < pF (n)

p = pF (n)
∼ ε

− 2(p−1)
(1+β)γF (p,n)

∼ exp(Cε−(p−1))

Lai, Takamura [22]
Wakasa, Yordanov [47]

β > 1
1 < p < pS(n)

p = pS(n)

� ε−2p(p−1)/γS (p,n)

� exp(Cε−p(p−1))

2.2. Scale-invariant damped wave equation

We consider now (2.1) for β = 1, hence we consider the Cauchy problem

⎧⎨⎩utt − �u + μ

1 + t
ut = |u|p, in Rn × (0, T ),

u(x,0) = εf (x), ut (x,0) = εg(x), x ∈Rn.

(2.3)

The scale-invariant problem has been studied intensively in the last years. This great interest 
is motivated by the fact that, differently from the damped wave equation with β = 1, in the 
scale-invariant case the results depend also on the damping coefficient μ, for determining both 
the critical exponent and the lifespan estimate. Hence, the situation is a bit more complicated, 
since the scale-invariant case shows results intermediate between the ones for the effective (−1 ≤
β < 1) and non-effective (β > 1) damping cases, and then it seems to be a threshold between a 
heat-like and a wave-like behaviour.

In the following two tables we collect, at the best of our knowledge, results concerning the 
existence and the blow-up for the scale-invariant damping.

Blow-up in finite time for β = 1

Authors Dim. n Coefficient μ Exponent p Lifespan Tε

Wakasugi
[48,49]

n ≥ 1
μ ≥ 1
0 < μ < 1

1 < p ≤ pF (n)

1 < p < 1 + 2
n+μ−1

� ε−(p−1)/γF (p,n)

� ε−(p−1)/γF (p,n+μ−1)

D’Abbicco,
Lucente,
Reissig [5]

n = 1
n = 2,3

μ = 2
1 < p ≤ pF (1)

1 < p ≤ pS(n + 2)

Wakasa [46]
Kato,
Takamura,
Wakasa [17]

n = 1 μ = 2
1 < p < pF (1)

p = pF (1)

∼ ε−(p−1)/γF (p,1)

∼ exp(Cε−(p−1))

Imai,
Kato,
Takamura,
Wakasa [14]

n = 2 μ = 2
1 < p < pF (2) = pS(2)

p = pF (2) = pS(2)

∼ ε−(p−1)/γF (p,2)

∼ exp(Cε−1/2)

(continued on next page)
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(continued)

Blow-up in finite time for β = 1

Authors Dim. n Coefficient μ Exponent p Lifespan Tε

Kato,
Sakuraba [16]

n = 3 μ = 2
1 < p < pS(5)

p = pS(5)

∼ ε−2p(p−1)/γS(p,5)

∼ exp(Cε−p(p−1))

Lai,
Takamura,
Wakasa [23]

n ≥ 2 0 < μ < n2+n+2
2(n+2)

pF (n) ≤ p < pS(n + 2μ) � ε−2p(p−1)/γS(p,n+2μ)

Ikeda,
Sobajima [10]

n ≥ 1 0 ≤ μ < n2+n+2
n+2

(μ = 0 if n = 1)
pF (n) < p ≤ pS(n + μ)

� ε−2p(p−1)/γS(p,n+μ)−δ

if

⎧⎪⎨⎪⎩
n = 1, 2

3 ≤ μ < 4
3

n = 1,0 < μ < 2
3 ,p ≥ 2

μ

n ≥ 2,p > pS(n + 2 + μ)

� ε
− 2(p−1)

μ −δ

if n = 1,0 < μ < 2
3 ,p < 2

μ

� ε−1−δ

if n ≥ 2,p < pS(n + 2 + μ)

� exp(Cε−p(p−1))

if p = pS(n + μ).

Tu, Lin
[44,45]

n ≥ 2
μ > 0

0 < μ < n2+n+2
n+2

1 < p < pS(n + μ)

p = pS(n + μ)

� ε−2p(p−1)/γS(p,n+μ)

� exp(Cε−p(p−1))

Global-in-time existence for β = 1

Authors Dimension n Coefficient μ Exponent p

D’Abbicco [2]
n = 1
n = 2
n ≥ 3

μ ≥ 5
3

μ ≥ 3
μ ≥ n + 2

p > pF (1)

p > pF (2)

pF (n) < p ≤ n
n−2

D’Abbicco, Lucente, Reissig [5]
Kato, Sakuraba [16], Lai [19]

n = 2,3 μ = 2 p > pS(n + 2)

D’Abbicco, Lucente [3]
n ≥ 5
(odd dim., rad. symm.)

μ = 2 pS(n + 2) < p < min
{

2, n+1
n−3

}
Palmieri [35] n ≥ 4 (even dim.) μ = 2 pS(n + 2) < p < pF (2)

Observe that the special case μ = 2 was widely studied, starting from D’Abbicco, Lucente 
and Reissig [5]. The reason is that, if we exploit the Liouville transform

v(x, t) := (1 + t)μ/2u(x, t)

in problem (2.3), it turns out to be⎧⎪⎪⎨⎪⎪⎩
vtt − �v + μ(2 − μ)

4(1 + t)2 v = |v|p
(1 + t)μ(p−1)/2

, in Rn × (0, T ),

v(x,0) = εf (x), vt (x,0) = ε
{μ

2
f (x) + g(x)

}
, x ∈Rn.

For μ = 2 the damping term disappears, making the analysis more manageable and related to the 
undamped wave equation. From the works [3,5,10,35,48] it is now clear that the critical exponent 
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for μ = 2 is pcrit = max{pF (n), pS(n +2)}, with the lifespan estimates stated in low dimensions 
n ≤ 3 by the works [14,16,17,46].

When μ = 2, it was observed that for small μ the problem is wave-like in the critical ex-
ponent and in the lifespan estimates, whereas it is heat-like for larger μ. However, the exact 
threshold was still unclear. We conjecture, in accordance with Remarks 1.2 and 1.4 in [10], that 
the threshold value should be

μ∗ ≡ μ∗(n) := n2 + n + 2

n + 2
,

and that the critical exponent is

pcrit = pμ(n) := max{pF (n − [μ − 1]−),pS(n + μ)} =
{

pS(n + μ) if 0 ≤ μ < μ∗,

pF (n) if μ ≥ μ∗.
(2.4)

Here and in the following, [x]± = |x|±x
2 indicates the positive and negative part functions respec-

tively.
The blow-up part of this conjecture has already been proved, combining [48] and [10]. In our 

next theorem, which is a straightforward corollary of Theorem 2, we reconfirm the blow-up range 
and we give cleaner estimates for the lifespan in the subcritical case, obtaining improvements 
mainly in the 1-dimensional case (see Remark 2.2). We refer to Fig. 1 for a graphic representation 
of the results below.

Theorem 1. Let μ ≥ 0 and 1 < p < pμ(n), with pμ(n) defined in (2.4). Assume that f ∈
H 1(Rn), g ∈ L2(Rn) and

f,h ≥ 0, h ≡ 0, where h := [μ − 1]+f + g.

Suppose that u is an energy solution of (2.3) on [0, T ) that satisfies

suppu ⊂ {(x, t) ∈Rn × [0,∞) : |x| ≤ t + R}

with some R ≥ 1.
Then, there exists a constant ε1 = ε1(f, g, μ, p, R) > 0 such that the blow-up time Tε of 

problem (2.3), for 0 < ε ≤ ε1, has to satisfy:

• if 0 ≤ μ < μ∗, then

Tε �

⎧⎪⎪⎨⎪⎪⎩
ε−(p−1)/γF (p,n−[μ−1]−) if 1 < p ≤ 2

n − |μ − 1| ,

ε−2p(p−1)/γS(p,n+μ) if
2

n − |μ − 1| < p < pμ(n);

• if μ ≥ μ∗, then

Tε � ε−(p−1)/γF (p,n) = ε−[2/(p−1)−n]−1
.
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Moreover, if μ = n = 1 and 1 < p ≤ 2 the estimate for Tε is improved by

Tε � φ0(ε)

where φ0 ≡ φ0(ε) is the solution of

εφ
2

p−1 −1

0 ln(1 + φ0) = 1.

Remark 2.1. Note that, if n ≥ 3 and 0 ≤ μ < n − 1, we can write the lifespan estimates in 
Theorem 1 explicitly as

Tε �

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ε−2p(p−1)/γS(p,n+μ)

if 0 ≤ μ ≤ n − 1 or

if n − 1 < μ < μ∗ and
2

n − μ + 1
< p < pμ(n),

ε−(p−1)/γF (p,n) if n − 1 < μ < μ∗ and 1 < p ≤ 2

n − μ + 1
.

Remark 2.2. Comparing the lifespan estimates in Theorem 1 with the known results summarized 
in the above table “Blow-up in finite time for β = 1”, we remark that the heat-like estimates for 
n ≥ 1 were already proved by Wakasugi [49], whereas the wave-like ones for n ≥ 2 by Tu and 
Lin [44]. The wave-like estimates for n = 1 were almost obtained by Ikeda and Sobajima [10]
for pF (n) ≤ p < pS(n + μ), with a loss in the exponent given by a constant δ > 0.

Hence our improvements are given by the wave-like estimates if n = 1 and by the logarithmic 
gain Tε � φ0(ε) if n = μ = 1 and 1 < p ≤ 2. Moreover, about the wave-like estimates for n ≥ 2, 
in [44] the initial data are supposed to be non-negative, whereas our conditions on the initial data 
are less restrictive.

Anyway, our approach is different and based on an iteration argument rather than on a test 
function method.

Remark 2.3. We conjecture that the lifespan estimates in Theorem 1 are indeed optimal, except 
on the “transition curve” (in the (p, μ)-plane) from the wave-like to the heat-like zone, given by

p = 2

n − |μ − 1| for 0 ≤ μ ≤ μ∗ and 1 < p ≤ pμ(n).

On this curve, the identity

2p γF (p,n − [μ − 1]−) = γS(p,n + μ)

holds true and here we expect a logarithmic gain, as already obtained for the case p = 2, μ =
n = 1 in the previous theorem, and for the case n = p = 2, μ = 0 for the wave equation (see 
Subsection 1.1). As we see from [14,16,17,46] the conjecture holds true if μ = 2 and n ≤ 3.

Remark 2.4. In this work we do not treat the critical case, but, to conclude our prospectus, it is 
natural to conjecture that
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Fig. 1. In this figure we collect the results from Theorem 1. If (p, μ) is in the blue area, we have that Tε �
ε−2p(p−1)/γS (p,n+μ) and hence the lifespan estimate is wave-like. Otherwise, if (p, μ) is in the red area, then 
Tε � ε−(p−1)/γF (p,n−[μ−1]−) and the lifespan estimate is heat-like. In the case n = 1, the dash-dotted line given by 
μ = 1, 1 < p ≤ 2 highlights the improvement Tε � φ0(ε).
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Tε ∼

⎧⎪⎨⎪⎩
exp
(
Cε−p(p−1)

)
if 0 ≤ μ < μ∗ and p = pμ(n) = pS(n + μ),

exp
(
Cε−(p−1)

)
if μ > μ∗ and p = pμ(n) = pF (n),

for some constant C > 0. We refer to [10,45] for the wave-like lifespan estimate from above in 
the critical case and to [14,16,17,46] for the proof of the conjecture if μ = 2 and n = 1, 3.

However, we expect a different behaviour if μ = μ∗ and p = pμ∗(n), that is when the tran-
sition curve from Remark 2.3 intersects the blow-up curve. This expectation is motivated from 
[14], where the authors prove for n = μ = μ∗ = pF (2) = pS(4) = 2 that Tε ∼ exp(Cε−1/2), 
which is neither a wave-like critical lifespan, nor a heat-like one.

2.3. Wave equation with scale-invariant damping and mass

Finally, we return to our main problem (1.1). The scale-invariant damped and massive wave 
equation was studied by A. Palmieri as object of his doctoral dissertation [33], under the super-
vision of M. Reissig. However, as far as we know, the research of the lifespan estimates in case 
of blow-up is still underdeveloped.

A key value for the study of this problem is

δ ≡ δ(μ1,μ2) := (μ1 − 1)2 − 4μ2,

which, roughly speaking, quantifies the interaction between the damping and the mass term. 
Indeed, if δ ≥ 0, the damping term is predominant and we observe again a competition between 
the wave-like and heat-like behaviours. In particular, the critical exponent seems to be wave-
like for small positive values of δ, while it is heat-like for large ones. If on the contrary δ < 0, 
the mass term has more influence and the equation becomes of Klein-Gordon type. To see this, 
we apply again the Liouville transform v(x, t) := (1 + t)μ1/2u(x, t) to problem (1.1), which 
therefore becomes⎧⎪⎪⎨⎪⎪⎩

vtt − �v + (1 − δ)/4

(1 + t)2 v = |v|p
(1 + t)μ1(p−1)/2

, in Rn × (0, T ),

v(x,0) = εf (x), vt (x,0) = ε
{μ1

2
f (x) + g(x)

}
, x ∈Rn.

(2.5)

In the following, we will consider only the case δ ≥ 0.
Let us start by collecting some known results. From [32,34,37], we know that for μ1, μ2 > 0

and δ ≥ (n + 1)2 the critical exponent for problem (1.1) is the shifted Fujita exponent

pcrit = pF

(
n + μ1 − 1 − √

δ

2

)
.

On the contrary, from [35,36], in the special case δ = 1 and under radial symmetric assumptions 
for n ≥ 3, Palmieri proved that the critical exponent is

pcrit = pS (n + μ1) .
11586



N.-A. Lai, N.M. Schiavone and H. Takamura Journal of Differential Equations 269 (2020) 11575–11620
The case δ = 1 is clearly analogous to the case μ = 2 for the scale-invariant damped wave equa-
tion without mass: under this assumption we see from (2.5) that the equation can be transformed 
into a wave equation without damping and mass and with a suitable nonlinearity. In [38], Palmieri 
and Reissig proved, by using the Kato’s lemma and Yagdjian integral transform, a blow-up re-
sult for δ ∈ (0, 1], and showed a competition between the shifted Fujita and Strauss exponents. 
Indeed, they obtained the blow-up result for

1 < p ≤ max

{
pF

(
n + μ1 − 1 − √

δ

2

)
,pS(n + μ1)

}

except for the critical case p = pS(n + μ1) in dimension n = 1. Finally, Palmieri and Tu in [39], 
under suitable sign assumption on the initial data and for μ1, μ2, δ non-negative, established a 
blow-up result for 1 < p ≤ pS(n + μ1) and furthermore the following lifespan estimates:

Tε �

⎧⎪⎨⎪⎩
ε−2p(p−1)/γS(p,n+μ1) if 1 < p < pS(n + μ1),

exp(Cε−p(p−1)) if p = pS(n + μ1) and p >
2

n − √
δ

.

They used an iteration argument based on the technique of double multiplier for the subcritical 
case and a version of test function method developed by Ikeda and Sobajima [10] for the critical 
case. Of course, we refer to the works by Palmieri and to his doctoral thesis for a more detailed 
background. We also mention the recent work [15] by Inui and Mizutani for results on the scat-
tering and asymptotic order for the wave equation with scale-invariant damping and mass terms 
and energy critical nonlinearity.

We present now our main result, concerning the blow-up of (1.1) for μ1, μ2 ∈ R and δ ≥ 0
and the upper bound for the lifespan estimates. Firstly, let us introduce the value

d∗(ν) :=
⎧⎨⎩

1

2

(
−1 − ν +

√
ν2 + 10ν − 7

)
if ν > 1,

0 if ν ≤ 1,
(2.6)

and set for simplicity

d∗ := d∗(n + μ1) ∈ [0,2). (2.7)

Observe that, if n + μ1 > 1, then

√
δ = n − d∗ ⇐⇒ γS(p,n + μ1) = 2γF

(
p,n + μ1 − 1 − √

δ

2

)
= 0

⇐⇒ pS(n + μ1) = pF

(
n + μ1 − 1 − √

δ

2

)
= 2

n − √
δ
.

(2.8)

The following result holds.
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Theorem 2. Let μ1, μ2 ∈R, δ ≥ 0 and 1 < p < pμ1,δ(n), with

pμ1,δ(n) := max

{
pF

(
n + μ1 − 1 − √

δ

2

)
, pS (n + μ1)

}
. (2.9)

Assume that f ∈ H 1(Rn), g ∈ L2(Rn) and

f,h ≥ 0, h ≡ 0, where h := μ1 − 1 + √
δ

2
f + g. (2.10)

Suppose that u is an energy solution of (1.1) on [0, T ) that satisfies

suppu ⊂ {(x, t) ∈Rn × [0,∞) : |x| ≤ t + R} (2.11)

with some R ≥ 1.
Then, there exists a constant ε2 = ε2(f, g, μ1, μ2, n, p, R) > 0 such that the blow-up time Tε

of problem (1.1), for 0 < ε ≤ ε2, has to satisfy:

• if 
√

δ ≤ n − 2, then

Tε � ε−2p(p−1)/γS(p,n+μ1);

• if n − 2 <
√

δ < n − d∗(n + μ1), then

Tε �

⎧⎪⎪⎨⎪⎪⎩
φ(ε) if 1 < p ≤ 2

n − √
δ

,

ε−2p(p−1)/γS(p,n+μ1) if
2

n − √
δ

< p < pμ1,δ(n),

where φ ≡ φ(ε) is the solution of

εφ

γF

(
p,n+(μ1−1−√

δ)/2
)

p−1 ln(1 + φ)1−sgn δ = 1;

• if 
√

δ ≥ n − d∗(n + μ1), then

Tε � φ(ε).

If in particular δ > 0, then

φ(ε) = ε−(p−1)/γF (p,n+(μ1−1−√
δ)/2) = ε

−
[
2/(p−1)−n−(μ1−1−√

δ)/2
]−1

.

Here and in the following, the sign function is defined as sgnx = |x|
x

if x = 0, whereas sgnx =
0 if x = 0.
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Remark 2.5. We can write the exponent in (2.9) explicitly as

pμ1,δ(n) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

pS (n + μ1) if n + μ1 > 1,
√

δ ≤ n − d∗,

pF

(
n + μ1 − 1 − √

δ

2

)
if n + μ1 > 1, n − d∗ <

√
δ < 2n + μ1 − 1,

+ ∞ if n + μ1 > 1,
√

δ ≥ 2n + μ1 − 1
or if n + μ1 ≤ 1.

Remark 2.6. Note that, setting the mass coefficient μ2 = 0 and the damping coefficient μ1 =
μ > 0, then 

√
δ = |μ − 1| and

√
δ ≤ n − d∗(n + μ) ⇐⇒ 0 < μ ≤ μ∗.

It is straightforward to check that, by imposing μ2 = 0, the results in Theorem 2 coincide with 
those in Theorem 1.

Remark 2.7. Analogously as in Remark 2.3, we conjecture that pμ1,δ(n) defined in (2.9) is 
indeed the critical exponent and that the lifespan estimates presented in Theorem 2 are optimal, 
except on the “transition surface” (in the (p, μ1, δ)-space) defined by

p = 2

n − √
δ

for n − 2 <
√

δ < n − d∗(n + μ1) and 1 < p ≤ pμ1,δ(n), (2.12)

on which we expect a logarithmic gain.
The exponent p = 2

n−√
δ

already emerged in Palmieri and Tu [39], but as a technical condition. 
We underline that this exponent comes out to be the solution of the equation

2p γF

(
p,n + μ1 − 1 − √

δ

2

)
= γS(p,n + μ1)

when n − 2 <
√

δ < n − d∗(n + μ1).

Remark 2.8. Similarly as in Remark 2.4, we expect that, if p = pμ1,δ(n), then

Tε ∼

⎧⎪⎨⎪⎩
exp
(
Cε−p(p−1)

)
if n + μ1 > 1 and

√
δ < n − d∗,

exp
(
Cε−(p−1)

)
if n + μ1 > 1 and n − d∗ <

√
δ < 2n + μ1 − 1,

for some constant C > 0. See [39] for the proof of the wave-like upper bound of the lifespan 
estimate in the critical case. Moreover, if 

√
δ = n − d∗(n + μ1) and p = pμ1,δ(n), we expect a 

different lifespan estimate, as in the massless case.
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2.4. Different lifespans for different initial conditions

In Theorems 1 & 2 we impose the condition on the initial data

h = μ1 − 1 + √
δ

2
f + g ≡ 0.

One could ask if this is only a technical condition, but it turns out that this is not the case: if we 
impose h ≡ 0, the lifespan estimates change drastically. This phenomenon was recently taken in 
consideration also in the works by Imai, Kato, Takamura and Wakasa [13,14,17].

Let us return to the wave equation{
utt − �u = |u|p, in Rn × (0, T ),

u(x,0) = εf (x), ut (x,0) = εg(x), x ∈Rn.

Since μ1 = μ2 = 0, in this case the condition h ≡ 0 is equivalent to g ≡ 0. Indeed, under the 
assumption ∫

Rn

g(x)dx = 0,

collecting the results from the works [13,24,28,29,40,41,56–58], we have that, for n ≥ 1, the 
following lifespan estimates hold:

Tε ∼
⎧⎨⎩ε−2p(p−1)/γS(p,n) if 1 < p < pS(n),

exp
(
Cε−p(p−1)

)
if p = pS(n),

excluding the critical case p = pS(n) for n ≥ 9 and without radial symmetry assumptions. We 
refer to the Introduction by Imai, Kato, Takamura and Wakasa [13] for a detailed background 
on these results. What is interesting is the fact that now we observe always a wave-like lifespan. 
This is in contrast with the estimates presented in Subsection 1.1, where, under the assumption∫

Rn

g(x)dx > 0,

we have heat-like lifespans in low dimensions, more precisely if n = 1 or if n = 2 and 1 < p ≤ 2, 
with a logarithmic gain if n = p = 2.

Let us consider now the Cauchy problem for the scale-invariant damped wave equation (2.1)
with μ = 2, that is

⎧⎨⎩utt − �u + 2

1 + t
ut = |u|p, in Rn × (0, T ),

u(x,0) = εf (x), u (x,0) = εg(x), x ∈Rn.
t
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Since μ1 = 2 and μ2 = 0, the condition h ≡ 0 is equivalent to f + g ≡ 0. In low dimensions 
n = 1 and n = 2, Kato, Takamura and Wakasa [17] and Imai, Kato, Takamura and Wakasa [14]
proved that, if the initial data satisfy∫

Rn

{f (x) + g(x)}dx = 0,

then the lifespan estimates in 1-dimensional case are

Tε ∼

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ε−2p(p−1)/γS(p,3) if 1 < p < 2,

b(ε) if p = 2,

ε−p(p−1)/γF (p,1) if 2 < p < pF (1),

exp(Cε−p(p−1)) if p = pF (1) = 3,

where b ≡ b(ε) satisfies the equation ε2b log(1 + b) = 1, and in 2-dimensional case are

Tε ∼
{

ε−2p(p−1)/γS(p,4) if 1 < p < pF (1) = pS(4) = 2,

exp(Cε−2/3) if p = pF (2) = pS(4) = 2.

These estimates are greatly different from the ones presented in Subsection 2.2, which hold under 
the assumption ∫

Rn

{f (x) + g(x)}dx = 0.

In dimension n = 1, we have no more a heat-like behaviour, but a wave-like one appears for 
p < 2, whereas for p > 2 we have a mixed-like behaviour, according to the notation introduced 
in Subsection 1.1. Indeed, in the latter case, even if the lifespan is related to the heat-like one, an 
additional p appears. In dimension n = 2, we have no more a heat-like behaviour, but a wave-
like one. The strange exponent in the critical lifespan can be explained by the same phenomenon 
underlined in Remark 2.4.

We are ready to exhibit our results, which give upper lifespan estimate in the subcritical case 
when h ≡ 0. It is easy to see that our estimates coincide with the ones just showed above in the 
respective cases. Going on with the exposition followed until now, we will present firstly the 
particular massless case, then the more general one with also the mass term. For simplicity, we 
will consider only non-negative damping coefficients.

Let us introduce the exponent

p∗ ≡ p∗(n + μ1, n − √
δ) :=

⎧⎪⎨⎪⎩1 + n − √
δ + 2

n + μ1 − 1
, if n + μ1 = 1,

+ ∞, if n + μ1 = 1,

(2.13)

and note that, for p > 1 and n + μ1 = 1,
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p = p∗ ⇐⇒ γS(p,n + μ1) = 2γF

(
p,n + μ1 − 1 − √

δ

2

)
. (2.14)

The following results hold. See Fig. 2 for a graphic representation of the claim in Theorem 3.

Theorem 3. Let μ ≥ 0 and 1 < p < pμ(n), with pμ(n) as in Theorem 1. Assume that f ∈
H 1(Rn), g ∈ L2(Rn) and

f ≥ 0, f ≡ 0, [μ − 1]+f + g ≡ 0.

Suppose that u is an energy solution of (2.3) on [0, T ) that satisfies (2.11) for some R ≥ 1.
Then there exists a constant ε3 = ε3(f, g, μ, p, R) > 0 such that the blow-up time Tε of prob-

lem (2.3), for 0 < ε ≤ ε3, has to satisfy:

• if 0 ≤ μ ≤ μ∗, then

Tε � ε−2p(p−1)/γS(p,n+μ);
• if μ∗ < μ < n + 3, then

Tε �

⎧⎪⎪⎨⎪⎪⎩
ε−2p(p−1)/γS(p,n+μ), if 1 < p < p∗,

σ0(ε), if p = p∗,

ε−p(p−1)/γF (p,n), if p∗ < p < pμ(n),

where σ0 ≡ σ0(ε) is the solution of

εpσ
2

p−1 −n

0 ln(1 + σ0) = 1

and

p∗ = 1 + n − μ + 3

n + μ − 1
;

• if μ ≥ n + 3, then

Tε � ε−p(p−1)/γF (p,n).

Moreover, if n = 1, 0 < μ < 2 and

1 < p <
2

1 + |μ − 1| ,

then the estimate for the blow-up time Tε is improved by

Tε � ε−(p−1)/γF (p,1+[μ−1]+).
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Fig. 2. Here we collect the results from Theorem 3. If (p, μ) is in the blue area, Tε � ε−2p(p−1)/γS (p,n+μ), hence the 
lifespan estimate is wave-like. If (p, μ) is in the purple area, Tε � ε−p(p−1)/γF (p,n) and the lifespan estimate is of 
mixed-type. The dash-dotted line given by p = p∗(n, μ) highlights the improvement Tε � σ0(ε). In the case n = 1, if 
(p, μ) is in the red area, Tε � ε−(p−1)/γF (p,1+[μ−1]−) and the lifespan estimate is heat-like.

Theorem 4. Let μ1 ≥ 0, μ2 ∈R, δ ≥ 0 and 1 < p < pμ1,δ(n), with pμ1,δ(n) defined in (2.9). As-
sume that f ∈ H 1(Rn), g ∈ L2(Rn) and f ≥ 0, f ≡ 0, h ≡ 0, with h defined in (2.10). Suppose 
that u is an energy solution of (1.1) on [0, T ) that satisfies (2.11) with some R ≥ 1.

Then, there exists a constant ε4 = ε4(f, g, μ1, μ2, p, R) > 0 such that the blow-up time Tε of 
problem (1.1), for 0 < ε ≤ ε4, has to satisfy:
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• if 
√

δ ≤ n − d∗(n + μ1), then

Tε � ε−2p(p−1)/γS(p,n+μ1);

• if n − d∗(n + μ1) <
√

δ < n + 2, then

Tε �

⎧⎪⎪⎨⎪⎪⎩
ε−2p(p−1)/γS(p,n+μ1), if 1 < p < p∗,

σ∗(ε), if p = p∗,

σ(ε), if p∗ < p < pμ1,δ(n),

where σ ≡ σ(ε) and σ∗ ≡ σ∗(ε) are the solutions respectively of

εpσ
γF (p,n+(μ1−1−√

δ)/2)

p−1 ln(1 + σ)1−sgn δ = 1,

εpσ

γF (p,n+(μ1−1−√
δ)/2)

p−1∗ ln(1 + σ∗)2−sgn δ = 1;

• if 
√

δ ≥ n + 2, then

Tε � σ(ε).

Moreover, if n = 1, 0 ≤ δ < 1 and

1 < p < r∗(μ1, δ) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 + 2
2 − √

δ

1 + μ1 + √
δ
, if

√
δ < θ,

1 + 2
2 − θ

1 + μ1 + θ
= 2

1 + θ
, if

√
δ = θ,

2

1 + √
δ
, if

√
δ > θ,

(2.15)

with

θ ≡ θ(μ1) := 1 + μ1

2
− 1

2

√
μ2

1 + 16 ∈ (−1,1), (2.16)

then the estimate for the blow-up time Tε is improved by

Tε � ε
−(p−1)/γF

(
p,(μ1+1+√

δ)/2
)
.

Remark 2.9. In the 1-dimensional case of Theorem 4, one can check that r∗ < pμ1,δ(1) holds 
always, except when μ1 = 3 and δ = 0, since in this case r∗ = p3,0(1) = pS(4) = 2. About the 
relation between p∗ and r∗, we have that, for 0 ≤ δ < 1, if 

√
δ � θ then p∗ � r∗.
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Remark 2.10. We conjecture that the estimates in the previous two theorems are indeed optimal, 
except in dimension n = 1 for Theorem 3 on the transition curve defined by

p = 2

1 + |μ − 1| for 0 ≤ μ ≤ 2,

and for Theorem 4 on the transition surface

p = r∗(μ1, δ) for 0 ≤ δ ≤ 1.

Moreover, in the critical case we expect, due to the wave-like and mixed-type behaviours,

Tε ∼ exp(Cε−p(p−1)),

except for 
√

δ = n − d∗(n + μ1) and p = pμ1,δ(n), where the lifespan should be different.

Remark 2.11. The conditions (2.10) on the initial data in Theorem 1 & 2 can be replaced by the 
less strong conditions∫

Rn

f (x) ≥ 0,

∫
Rn

f (x)φ1(x) ≥ 0,

∫
Rn

h(x) > 0,

∫
Rn

h(x)φ1(x) > 0,

where the positive function φ1(x) is defined later in (4.9).
Something similar can be done for the initial conditions of Theorem 3 & 4, requiring∫

Rn

f (x) > 0,

∫
Rn

f (x)φ1(x) > 0,

∫
Rn

h(x) = 0,

∫
Rn

h(x)φ1(x) = 0.

It will be clear from the proof of our theorems that these weaker hypothesis are sufficient.

2.5. Wave equation with scattering damping and negative mass

In the end, in this subsection we want to continue the study of a problem examined by the 
authors in [20,21]. In these two works, we considered the Cauchy problem for the wave equation 
with scattering damping and negative mass term, thus⎧⎨⎩wtt − �w + ν1

(1 + t)β
wt + ν2

(1 + t)α+1 w = |w|p, in Rn × (0, T ),

w(x,0) = εf (x), wt (x,0) = εg(x), x ∈Rn,

(2.17)

where ν1 ≥ 0, ν2 < 0, α ∈ R and β > 1.
In Subsection 2.2 we already observed that, if the damping is of scattering type, the solution 

of the homogeneous damped wave equation “scatters” to the one of the wave equation. For the 
equation with power non-linearity, according to the results by Lai and Takamura [22] and Wakasa 
and Yordanov [47], the solution again seems to be wave-like both in the critical exponent and in 
the lifespan estimate.
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In [20], the authors took in consideration (2.17) with α > 1 and observed a double scat-
tering phenomenon, in the sense that both the damping and the mass terms seem to be not 
effective. Hence, the solution behaves like that of the wave equation with power non-linearity 
utt − �u = |u|p . More precisely, supposing for simplicity that f, g are non-negative, non-
vanishing, compactly supported functions, we established the blow-up for 1 < p < pS(n) and 
the upper bound for the lifespan estimates:

Tε �

⎧⎪⎪⎨⎪⎪⎩
ε−(p−1)/γF (p,n−1) if n = 1 or n = 2,1 < p < 2,

a(ε) if n = p = 2,

ε−2p(p−1)/γS(p,n) if n = 2,2 < p < pS(n) or if n ≥ 3,

where a ≡ a(ε) satisfies ε2a2 log(1 + a) = 1, although in the case n = p = 2 more technical 
conditions were required.

In [21], the authors studied the case α < 1, discovering a new behaviour in the lifespan esti-
mate. Indeed, we proved blow-up for every p > 1 and the upper lifespan estimate

Tε � ζ(Cε),

where ζ ≡ ζ(ε) is the larger solution of the equation

εζ
γF (p,n−(1+α)/4)

(p−1) exp
(
Kζ

1−α
2

)
= 1, with K = 2

√|ν2|
1 − α

exp

(
ν1

2(1 − β)

)
.

As observed in Remark 2.1 of [21], a less sharp but more clear estimate for the lifespan in the 
case α < 1 is

Tε �
[
log (1/ε)

]2/(1−α)
.

Hence, the negative mass term with α > 1 seems to have no influence on the behaviour of the 
solution; on the contrary, if α < 1 the negative mass term becomes extremely relevant, implying 
the blow-up for all p > 1 and a lifespan estimate which is much shorter, compared to the ones 
introduced previously.

We now come to the case α = 1. This is particular and was not deepened in our previous 
works. Indeed in Subsection 4.5, after introducing a multiplier to absorb the damping term, we 
will show that we can get blow-up results and lifespan estimates for this problem by reducing 
ourself to calculations similar to the ones we will perform to prove the results in the previous 
subsections. Roughly speaking, we will find out that (2.17) with α = 1 has the same behaviour 
as that of (1.1) with μ1 = 0 and μ2 = ν2e

ν1/(1−β).
Therefore, in the following we will consider the Cauchy problem⎧⎨⎩wtt − �w + ν1

(1 + t)β
wt + ν2

(1 + t)2 w = |w|p, in Rn × (0, T ),

w(x,0) = εf (x), wt (x,0) = εg(x), x ∈ Rn,

(2.18)

where ν1 ≥ 0, ν2 < 0 and β > 1.
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Definition 2. We say that u is an energy solution of (2.18) over [0, T ) if

w ∈ C([0, T ),H 1(Rn)) ∩ C1([0, T ),L2(Rn)) ∩ C((0, T ),L
p
loc(R

n))

satisfies w(x, 0) = εf (x) in H 1(Rn), wt(x, 0) = εg(x) in L2(Rn) and

∫
Rn

wt (x, t)φ(x, t)dx +
t∫

0

ds

∫
Rn

{−wt(x, s)φt (x, s) + ∇w(x, s) · ∇φ(x, s)}dx

+
t∫

0

ds

∫
Rn

ν1

(1 + s)β
wt (x, s)φ(x, s)dx +

t∫
0

ds

∫
Rn

ν2

(1 + s)2 w(x, s)φ(x, s)dx

=
∫
Rn

εg(x)φ(x,0)dx +
t∫

0

ds

∫
Rn

|w(x, s)|pφ(x, s)dx

(2.19)

with any test function φ ∈ C∞
0 (Rn × [0, T )) for t ∈ [0, T ).

We have the following result. See Fig. 3 for a graphic representation of them.

Theorem 5. Fix ν1 ≥ 0, ν2 < 0, β > 1. Define

δ := 1 − 4ν2e
ν1/(1−β) > 1, d∗(n) := 1

2

(
−1 − n +

√
n2 + 10n − 7

)
∈ [0,2)

and let 1 < p < pδ(n), with

pδ(n) = max

{
pF

(
n − 1 + √

δ

2

)
, pS (n)

}

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

pS (n) if n ≥ 2,
√

δ ≤ n − d∗(n),

pF

(
n − 1 + √

δ

2

)
if n ≥ 2, n − d∗(n) <

√
δ < 2n − 1,

+ ∞ if n = 1 or if n ≥ 2,
√

δ ≥ 2n − 1.

Assume that f ∈ H 1(Rn), g ∈ L2(Rn) are non-negative and not both vanishing. Suppose that w
is an energy solution of (2.18) on [0, T ) that, for some R ≥ 1, satisfies

suppw ⊂ {(x, t) ∈ Rn × [0,∞) : |x| ≤ t + R}.

Then, there exists a constant ε5 = ε5(f, g, β, ν1, ν2, n, p, R) > 0 such that the blow-up time 
Tε of problem (2.18), for 0 < ε ≤ ε5, has to satisfy:
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• if 
√

δ ≤ n − 2, then

Tε � ε−2p(p−1)/γS(p,n);
• if n − 2 <

√
δ < n − d∗(n), then

Tε �

⎧⎪⎪⎨⎪⎪⎩
ε−(p−1)/γF (p,n−(1+√

δ)/2), if 1 < p ≤ 2

n − √
δ

,

ε−2p(p−1)/γS(p,n), if
2

n − √
δ

< p < pδ(n);

• if 
√

δ ≥ n − d∗(n), then

Tε � ε−(p−1)/γF (p,n−(1+√
δ)/2) = ε

−
[
2/(p−1)−n+(1+√

δ)/2
]−1

.

Remark 2.12. As a direct consequence of Remark 2.7 & 2.8, we expect that pδ(n) is the criti-
cal exponent and that the lifespan estimates presented in Theorem 5 are optimal, except on the 
transition curve (in the (p, δ)-plane) defined by

p = 2

n − √
δ

for n − 2 <
√

δ < n − d∗(n) and 1 < p ≤ pδ(n),

on which we presume a logarithmic gain can appear.
Moreover, we expect that, if p = pδ(n), then

Tε ∼

⎧⎪⎨⎪⎩
exp
(
Cε−p(p−1)

)
if n ≥ 2,

√
δ < n − d∗(n),

exp
(
Cε−(p−1)

)
if n ≥ 2, n − d∗(n) <

√
δ < 2n − 1,

for some constant C > 0. If 
√

δ = n − d∗(n) and p = pδ(n), we presume a lifespan estimate of 
different kind.

3. Kato’s type lemma

The principal ingredient we will employ in the demonstration of our theorems is the following 
Kato’s type lemma. Although this tool is well known and used in the literature, here we will 
reformulate it in such a way, in the following sections, we can directly apply it to obtain not 
only the condition to find the possible critical exponent, but also the upper bound of the lifespan 
estimate. We will prove it using the so called iteration argument.

Lemma 1. Let p > 1, a, b ∈R satisfy

γ := 2[(p − 1)a − b + 2] > 0.

Assume that F ∈ C([0, T )) satisfies, for t ≥ T0,
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Fig. 3. Here we collect the results from Theorem 5. If (p, 
√

δ) is in the blue area, Tε � ε−2p(p−1)/γS (p,n) , hence the 
lifespan estimate is wave-like. Otherwise, if (p, 

√
δ) is in the red area, Tε � ε−(p−1)/γF (p,n−(1+√

δ)/2) and the lifespan 
is heat-like. Note that this figure represents also the results of Theorem 2 for the case μ1 = 0, μ2 ≤ 1/4.
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F(t) ≥ EAta [ln(1 + t)]c , (3.1)

F(t) ≥ B

t∫
T0

ds

s∫
T0

r−bF (r)pdr, (3.2)

where c, T0 ≥ 0 and E, A, B > 0. Suppose that there exists T̃ ≥ T0 which solves

ET̃
γ

2(p−1)
[
ln(1 + T̃ )

]c = 1. (3.3)

Then, we have that

T < CT̃

for some positive constant C independent of E.

Proof. Let T̃ be as in the statement of the lemma and start with the ansatz

F(t) ≥ Dj

[
ln(1 + T̃ )

]cj
t−bj (t − T̃ )aj for t ≥ T̃ , j = 1,2,3, . . . (3.4)

where Dj, aj , bj , cj are positive constants to be determined later. Due to hypothesis (3.1), note 
that (3.4) is true for j = 1 with

D1 = EA, a1 = [a]+, b1 = [a]−, c1 = c, (3.5)

where [x]± := (|x| ± x)/2. Plugging (3.4) into (3.2), we get

F(t) ≥ D
p
j B

t∫
T̃

ds

s∫
T̃

[
ln(1 + T̃ )

]pcj
r−b−pbj (r − T̃ )paj dr

≥ D
p
j B

(paj + [b]− + 2)2

[
ln(1 + T̃ )

]pcj
t−pbj −[b]+(t − T̃ )paj +[b]−+2 for t ≥ T̃ ,

and then we can define the sequences {Dj }j∈N , {aj }j∈N , {bj }j∈N , {cj }j∈N by

Dj+1 = D
p
j B

(paj + [b]− + 2)2 , aj+1 = paj + [b]− + 2, bj+1 = pbj + [b]+, cj+1 = pcj ,

to establish (3.4) with j replaced by j + 1. It follows from the previous relations and (3.5) that 
for j ≥ 1

aj = pj−1
(

[a]+ + [b]− + 2

p − 1

)
− [b]− + 2

p − 1
,

bj = pj−1
(

[a]− + [b]+ )− [b]+
, cj = pj−1c.
p − 1 p − 1
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In particular, we obtain that

paj + [b]− + 2 = aj+1 ≤ pj

(
[a]+ + [b]− + 2

p − 1

)
=⇒ Dj+1 ≥ C̃p−2jD

p
j , (3.6)

where C̃ := B/{[a]+ + ([b]− + 2)/(p − 1)}2 > 0. From (3.6) and D1 = EA, by an inductive 
argument we infer, for j ≥ 2, that

Dj ≥ exp
{
pj−1 [ln(EA) − Sj

]}
,

where

Sj :=
j−1∑
k=1

2k lnp − ln C̃

pk
.

Since 
∑∞

k=0 xk = 1/(1 − x) and 
∑∞

k=1 kxk = x/(1 − x)2 when |x| < 1, we obtain

S∞ := lim
j→+∞Sj = ln{C̃p/(1−p)p2p/(1−p)2}.

Moreover, there exists j0 ≥ 2 such that the sequence Sj is increasing for j ≥ j0. Hence we obtain 
that

Dj ≥ (EAe−S∞)p
j−1

for j sufficiently large. Let us turning back to (3.4) and let C > 1 be a constant to be determined 
later. Supposing t ≥ CT̃ , so that in particular t − T̃ ≥ (1 −1/C)t , and considering (3.3), we have

F(t) ≥ t
[b]+
p−1 (t − T̃ )

− [b]−+2
p−1

{
EAe−S∞ [ln(1 + T̃ )

]c
t
−[a]−− [b]+

p−1 (t − T̃ )
[a]++ [b]−+2

p−1

}pj−1

≥ t
[b]+
p−1 (t − T̃ )

− [b]−+2
p−1

⎧⎨⎩EAe−S∞
(

1 − 1

C

)[a]++ [b]−+2
p−1 [

ln(1 + T̃ )
]c

t
γ

2(p−1)

⎫⎬⎭
pj−1

≥ t
[b]+
p−1 (t − T̃ )

− [b]−+2
p−1 Jpj−1

(3.7)

with J := Ae−S∞ (1 − 1/C)
[a]++ [b]−+2

p−1 C
γ

2(p−1) . Since γ > 0, we can choose C > 1 big enough, 
such that J > 1. Letting j → +∞ in (3.7), we get F(t) → +∞. Then, T < CT̃ as claimed. �
Remark 3.1. We can observe that the previous lemma is still true if in (3.2) an arbitrary number 
of integrals appear, more precisely if we replace (3.2) with

F(t) ≥ B

t∫
dt1

t1∫
dt2 · · ·

tk−1∫
t−b
k F (tk)

pdtk for t ≥ T0,
T0 T0 T0
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and γ with γk := 2[(p − 1)a − b + k], where k ≥ 1 is an integer.

4. Proof for theorems

We now come to the demonstration for Theorems 2 & 4. In the next two subsections, we will 
prove some key inequalities which will be employed in the machinery of the Kato’s type lemma. 
Applying the latter, we will find a couple of results, which will be compared in Subsection 4.4 to 
find the claimed ones. The proof of Theorems 1 & 3 are clearly omitted, since they are corollaries 
of Theorems 2 & 4 respectively, just setting the mass equal to zero. In the end, we will sketch the 
proof for Theorem 5 in Subsection 4.5.

4.1. Key estimates

Let us define the functional

F0(t) :=
∫
Rn

u(x, t)dx.

Choosing the test function φ = φ(x, s) in (1.2) to satisfy

φ ≡ 1 in {(x, s) ∈Rn × [0, t] : |x| ≤ s + R}, (4.1)

we get ∫
Rn

ut (x, t)dx −
∫
Rn

ut (x,0)dx

+
t∫

0

ds

∫
Rn

μ1

1 + s
ut (x, s)dx +

t∫
0

∫
Rn

μ2

(1 + s)2 u(x, s)dx

=
t∫

0

ds

∫
Rn

|u(x, s)|pdx,

which yields, by taking derivative with respect to t ,

F ′′
0 (t) + μ1

1 + t
F ′

0(t) + μ2

(1 + t)2 F0(t) =
∫
Rn

|u(x, t)|pdx. (4.2)

Setting

λ := 1 + √
δ > 0, κ := μ1 − 1 − √

δ

2
, δ := (μ1 − 1)2 − 4μ2,

we obtain that (4.2) is equivalent to
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d

dt

{
(1 + t)λ

d

dt

[
(1 + t)κF0(t)

]}= (1 + t)κ+λ

∫
Rn

|u(x, t)|pdx.

Integrating twice the above equality over [0, t], we get

F0(t) = L(t) + M(t), (4.3)

where

L(t) := F0(0)(1 + t)−κ + [κF0(0) + F ′
0(0)](1 + t)−κ

t∫
0

(1 + s)−λds,

M(t) := (1 + t)−κ

t∫
0

(1 + s)−λds

s∫
0

(1 + r)κ+λdr

∫
Rn

|u(x, r)|pdx ≥ 0.

Define the functional

F(t) := (1 + t)κ+λF0(t)

and observe that F0 and F imply the same blow-up results, so we will study the latter functional. 
Since ∫

Rn

f (x)dx ≥ 0, H0 :=
∫
Rn

h(x)dx ≥ 0,

and they are not both equal to zero, we want to prove that there exists a time T0 > 0, independent 
of ε, such that, for t ≥ T0, the following estimates hold:

F(t) �
t∫

T0

ds

s∫
T0

r−(n+κ+λ)(p−1)F(r)pdr, (4.4)

F(t)� ε

{
t if H0 = 0,

tλ ln1−sgn δ(1 + t) if H0 > 0,
(4.5)

F(t)� εp

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

tκ+λ−(n+μ1−1)
p
2 +n+1 if κ − (n + μ1 − 1)

p

2
+ n + 1 > 0,

tλ ln2−sgn δ(1 + t) if κ − (n + μ1 − 1)
p

2
+ n + 1 = 0,

tλ ln1−sgn δ(1 + t) if κ − (n + μ1 − 1)
p

2
+ n + 1 < 0.

(4.6)

Thanks to the Hölder inequality and using the compact support of the solution (2.11), we have∫
n

|u(x, t)|pdx � t−n(p−1)|F0(t)|p = (1 + t)−n(p−1)−(κ+λ)pF(t)p (4.7)
R
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for t � 1. Considering L and recalling the definition (2.10) of H0 we obtain

L(t) =

⎧⎪⎨⎪⎩
(1 + t)−κ [F0(0) + εH0 ln(1 + t)] if δ = 0,

(1 + t)−κ

√
δ

{
εH0 + [√δF0(0) − εH0](1 + t)−

√
δ
}

if δ > 0.

So, from the condition on the initial data we get, for t � 1 sufficiently large, that

L(t) � ε

⎧⎪⎪⎨⎪⎪⎩
t−κ−√

δ if H0 = 0,

t−κ if H0 > 0, δ > 0,

t−κ ln(1 + t) if H0 > 0, δ = 0,

(4.8)

and in particular the positiveness of L for large time. Neglecting L from (4.3), inserting (4.7) and 
recalling that λ > 0, we get (4.4). Instead, inserting (4.8) in (4.3) and neglecting M , we reach 
(4.5).

Finally, we will prove (4.6) in the next section.

4.2. Weighted functional

Let us introduce

F1(t) :=
∫
Rn

u(x, t)ψ1(x, t)dx,

where ψ1 is the test function presented by Yordanov and Zhang in [54],

ψ1(x, t) := e−tφ1(x), φ1(x) :=

⎧⎪⎨⎪⎩
∫

Sn−1

ex·ωdSω for n ≥ 2,

ex + e−x for n = 1,

(4.9)

which satisfies the following inequality (equation (2.5) in [54]):

∫
|x|≤t+R

ψ1(x, t)
p

p−1 dx � (1 + t)
(n−1)

{
1− p

2(p−1)

}
. (4.10)

We want to establish the lower bound for F1. From the definition of energy solution (1.2), we 
have that
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d

dt

∫
Rn

ut (x, t)φ(x, t)dx

−
∫
Rn

ut (x, t)φt (x, t)dx −
∫
Rn

u(x, t)�φ(x, t)dx

+
∫
Rn

μ1

1 + t
ut (x, t)φ(x, t)dx +

∫
Rn

μ2

(1 + t)2 u(x, t)φ(x, t)dx

=
∫
Rn

|u(x, t)|pφ(x, t)dx.

Integrating the above inequality over [0, t], and in particular using integration by parts on the 
second term in the first line and on the first term in the second line, we get∫

Rn

ut (x, t)φ(x, t)dx − ε

∫
Rn

g(x)φ(x,0)dx

−
∫
Rn

u(x, t)φt (x, t)dx + ε

∫
Rn

f (x)φt (x,0)dx

+
t∫

0

ds

∫
Rn

u(x, s)φtt (x, s)dx −
t∫

0

ds

∫
Rn

u(x, s)�φ(x, s)dx

+
∫
Rn

μ1

1 + t
u(x, t)φ(x, t)dx − εμ1

∫
Rn

f (x)φ(x,0)dx

+
t∫

0

ds

∫
Rn

u(x, s)
μ1

(1 + s)2 φ(x, s)dx −
t∫

0

ds

∫
Rn

u(x, s)
μ1

1 + s
φt (x, s)dx

+
t∫

0

ds

∫
Rn

μ2

(1 + s)2 u(x, s)φ(x, s)dx

=
t∫

0

ds

∫
Rn

|u(x, s)|pφ(x, s)dx.

(4.11)

Setting

φ(x, t) = ψ1(x, t) = e−tφ1(x) on suppu,

then we have

φt = −φ, φtt = �φ on suppu.
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Hence we obtain from (4.11)

F ′
1(t) + 2F1(t) + μ1

1 + t
F1(t) +

t∫
0

{
μ1

1 + s
+ μ1 + μ2

(1 + s)2

}
F1(s)ds

= ε

∫
Rn

{(1 + μ1)f (x) + g(x)}φ1(x)dx +
t∫

0

ds

∫
Rn

|u(x, s)|pφ(x, s)dx,

from which, after a derivation,

F ′′
1 (t) +

(
2 + μ1

1 + t

)
F ′

1(t) +
(

μ1

1 + t
+ μ2

(1 + t)2

)
F1(t) =

∫
Rn

|u(x, t)|pφ(x, t)dx (4.12)

Let us define the multiplier

m(t) := et (1 + t)
μ1−1

2 > 0.

Then, multiplying equation (4.12) by m(t), using for convenience the change of variables z :=
1 + t and denoting

B(z) := m(t)F1(t), (4.13)

we obtain that B satisfies the nonlinear modified Bessel’s equation

z2 d2B
dz2 (z) + z

dB
dz

(z) −
(

z2 + δ

4

)
B(z) = N(z) (4.14)

with initial data

B(1) = ε

∫
Rn

f (x)φ1(x)dx,
dB
dz

(1) = ε

∫
Rn

{
μ1 − 1

2
f (x) + g(x)

}
φ1(x)dx, (4.15)

and where

N(z) := z2m(z − 1)

∫
Rn

|u(x, z − 1)|pφ(x, z − 1)dx ≥ 0.

Now we want to estimate B.
Homogeneous problem. Let us firstly consider the homogeneous Cauchy problem⎧⎪⎪⎪⎨⎪⎪⎪⎩

z2 d2B0

dz2 (z) + z
dB0

dz
(z) −

(
z2 + δ

4

)
B0(z) = 0, z ≥ 1,

B0(1) = B(1),
dB0

(1) = dB
(1).
dz dz
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The fundamental solutions are the modified Bessel’s functions B+√
δ/2

(z) := I√
δ/2(z) and 

B−√
δ/2

(z) := K√
δ/2(z). Then we have

B0(z) = εc+B+√
δ/2

(z) + εc−B−√
δ/2

(z),

where, thanks to equations (9.6.15) and (9.6.26) from Chapter 9 in [1], it holds

c± = ±ε−1

{
dB0

dz
(1) −

√
δ

2
B0(1)

}
B∓√

δ/2
(1) + ε−1B0(1)B∓

1+√
δ/2

(1)

= ±B∓√
δ/2

(1)

∫
Rn

h(x)φ1(x)dx +
[
∓√

δB∓√
δ/2

(1) + B∓
1+√

δ/2
(1)
] ∫
Rn

f (x)φ1(x)dx

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
± B∓

0 (1)

∫
Rn

h(x)φ1(x)dx + B∓
1 (1)

∫
Rn

f (x)φ1(x)dx if δ = 0,

± B∓√
δ/2

(1)

∫
Rn

h(x)φ1(x)dx + B∓
−1+√

δ/2
(1)

∫
Rn

f (x)φ1(x)dx if δ > 0.

Due to the assumptions on the initial data and recalling that B+
ν (z), B−

ν (z) > 0 when ν > −1 and 
z > 0, we can observe that c+ > 0 (see also Remark 2.11). Exploiting the asymptotic expansions 
for the modified Bessel’s functions (equations (9.7.1) and (9.7.2) from Chapter 9 in [1]), we have 
that

B0(z) = ε

[
c+

ez

√
2πz

+ c−
√

π

2z
e−z

]
(1 + O(1/z)).

Then, there exist two constants C > 0 and z0 ≥ 1, both independent of ε, such that

B0(z) ≥ Cεz−1/2ez for z ≥ z0. (4.16)

Inhomogeneous problem. Let us consider now the Cauchy problem⎧⎪⎪⎪⎨⎪⎪⎪⎩
z2 d2BN

dz2 (z) + z
dBN

dz
(z) −

(
z2 + δ

4

)
BN(z) = N(z), z ≥ 1,

BN(1) = dBN

dz
(1) = 0.

Exploiting the method of variation of parameters, we have that

BN(z) = B+√
δ/2

(z)

z∫
ξB−√

δ/2
(ξ)N(ξ)dξ − B−√

δ/2
(z)

z∫
ξB+√

δ/2
(ξ)N(ξ)dξ.
1 1
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Recalling that N(z) ≥ 0 and using the fact that B+√
δ/2

(z) is increasing and B−√
δ/2

(z) is decreasing 

respect to the argument for z > 0 (due to relations (9.6.26) from Chapter 9 in [1]), we get that

BN(z) ≥ 0 for z ≥ 1. (4.17)

Since the solution B to the Cauchy problem (4.14)-(4.15) is the sum of B0 and BN and from 
estimates (4.16) and (4.17), we get

B(z) = B0(z) +BN(z) � εz−1/2ez for z ≥ z0.

So, recalling the definition (4.13) of B and changing again the variables, we reach

F1(t) � ε(1 + t)−μ1/2 for t � 1. (4.18)

By Hölder’s inequality and using estimates (4.10) and (4.18), we obtain

∫
Rn

|u(x, t)|pdx ≥
⎛⎝∫
Rn

|ψ1(x, t)|p/(p−1)

⎞⎠1−p

|F1(t)|p

� εp(1 + t)−(n+μ1−1)
p
2 +n−1 for t � 1,

plugging which into (4.3) and recalling that L(t) is positive for t great enough, give us

F0(t)� εp(1 + t)−κ

t∫
T1

(1 + s)−λds

s∫
T1

(1 + r)q+√
δ−1dr for t ≥ T1,

for a suitable T1 > 0 independent of ε, where we define

q ≡ q(p) := κ − (n + μ1 − 1)
p

2
+ n + 1. (4.19)

We obtain, for large time t � 1, that:

• if q > −√
δ, then

F0(t) � εpt−κ

⎧⎪⎪⎨⎪⎪⎩
tq if q > 0,

ln(1 + t) if q = 0,

1 if q < 0;

• if q = −√
δ, then

F0(t) � εpt−κ

{
1 if δ > 0,

ln2(1 + t) if δ = 0;
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• if q < −√
δ, then

F0(t) � εpt−κ

{
1 if δ > 0,

ln(1 + t) if δ = 0.

Summing all up, we deduce the relations in (4.6).

4.3. Application of Kato’s type lemma

Now we will proceed applying the Kato’s type lemma, as presented in Section 3, twice to 
two different couples of inequalities, and subsequently we will infer which result is optimal. The 
calculations of this subsection are all elementary (and quite tedious), so we will only sketch them.

Apply Lemma 1 to the inequalities (4.4) and (4.5), with

E = ε,

a =
{

1 if H0 = 0,

λ if H0 > 0.
b = (n + κ + λ)(p − 1),

c =
{

0 if H0 = 0,

1 − sgn δ if H0 > 0,

1 < p < pc :=
{

pF (n + κ + √
δ) if H0 = 0,

pF (n + κ) if H0 > 0,

γ =
{

2γF (p,n + κ + √
δ) if H0 = 0,

2γF (p,n + κ) if H0 > 0.

We chose p ∈ (1, pc) since this is equivalent to γ > 0 for p > 1. Then, for every p ∈ (1, pc), we 
have Tε � T̃ ≡ T̃ (ε), with

εpT̃
pγ
p−1
[
ln(1 + T̃ )

]pc = 1. (4.20)

Apply Lemma 1 to the inequalities (4.4) and (4.6), with

E = εp,

a =
{

λ + q if q > 0,

λ if q ≤ 0,
b = (n + κ + λ)(p − 1),

c =

⎧⎪⎪⎨⎪⎪⎩
0 if q > 0,

2 − sgn δ if q = 0,

1 − sgn δ if q < 0,

1 < p < pc, γ =
{

γS(p,n + μ1) if q > 0,

2γF (p,n + κ) if q ≤ 0,
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where q is the one in (4.19) and pc ∈ (1, +∞] is defined as the exponent such that γ > 0 for 
1 < p < pc (we will explicitly define this exponent later). Then, for every p ∈ (1, pc), we have 
Tε � S̃ ≡ S̃(ε), with

εpS̃
γ

p−1
[
ln(1 + S̃)

]c = 1. (4.21)

In both cases, since (4.4), (4.6) and (4.5) are true for t ≥ T0 with some time T0, and since we need 
to require T̃ , ̃S ≥ T0 to apply the Kato’s type lemma, we need to impose also that ε is sufficiently 
small. From these computations, we deduce the blow-up for 1 < p < pk := max{pc, pc} and the 
upper bound of the lifespan estimate Tε � min{T̃ , ̃S}. We will go further in the analysis to clarify 
these values.

Before moving forward, in order to understand the definition of ̃S we need to write down more 
explicitly the definitions of c, pc and γ , since they depend on q and therefore on the exponent 
p. Firstly, recall the definition (2.13) of p∗ = p∗(n + μ1, n − √

δ) and that, by (2.14), for p > 1
and μ1 + n = 1, it holds

p = p∗ ⇐⇒ q(p) = 0 ⇐⇒ γS(p,n + μ1) = 2γF (p,n + κ).

We will consider several cases, due to the generality of the constants involved, but what lies 
beneath is the elementary comparison between the parabola γS (line in the case μ1 + n = 1) and 
the line 2γF . Also, since we want to be in the hypothesis of Kato’s type lemma, our interest is 
directed to γ > 0, and so we explicate its definition only for the range 1 < p < pc .

Case 1: n + μ1 > 1. Recalling the definition (2.6)–(2.7) of d∗ := d∗(n + μ1) and the relation 
(2.8), we have that the following hold true:

0 < d∗ < 2,

√
δ = n − d∗ ⇐⇒ p∗ = pS(n + μ1) = pF (n + κ) = 2

d∗
.

Taking also in account that

√
δ ≤ n − d∗(n + μ1) ⇐⇒ p∗ ≥ pS(n + μ1),√

δ < n + 2 ⇐⇒ p∗ > 1,

q > 0 ⇐⇒ p < p∗,

we have:

• if 
√

δ ≤ n − d∗, then

pc = pS(n + μ1),

γ = γS(p,n + μ1), for 1 < p < pc,

c = 0;
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• if n − d∗ <
√

δ < n + 2, then

pc = pF (n + κ),

γ =
{

γS(p,n + μ1), for 1 < p < p∗,

2γF (p,n + κ), for p∗ ≤ p < pc,

c =

⎧⎪⎪⎨⎪⎪⎩
0, for 1 < p < p∗,

2 − sgn δ, for p = p∗,

1 − sgn δ, for p∗ < p < pc;

• if 
√

δ ≥ n + 2, then

pc = pF (n + κ),

γ = 2γF (p,n + κ) for 1 < p < pc,

c = 1 − sgn δ.

Case 2: n + μ1 = 1. Taking in account that

q > 0 ⇐⇒ √
δ < n + 2

we have:

• if 
√

δ < n + 2, then

pc = pS(n + μ1) = pS(1) = +∞,

γ = γS(p,n + μ1) = γS(p,1) = 2 + 2p, for 1 < p < pc,

c = 0;

• if 
√

δ = n + 2, then

pc = pS(n + μ1) = pF (n + κ) = +∞,

γ = γS(p,n + μ1) = 2γF (p,n + κ) = 2 + 2p, for 1 < p < pc,

c = 2 − sgn δ;

• if 
√

δ > n + 2, then

pc = pF (n + κ) = pF

(
(n − √

δ)/2
)

= +∞,

γ = 2γF (p,n + κ) = 2γF

(
p, (n − √

δ)/2
)

, for 1 < p < pc,

c = 1 − sgn δ.
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Case 3: n + μ1 < 1. Taking in account that

p∗ > 1 ⇐⇒ √
δ > n + 2,

q > 0 ⇐⇒ p > p∗,

we have:

• if 
√

δ ≤ n + 2, then

pc = pS(n + μ1) = +∞,

γ = γS(p,n + μ1) for 1 < p < pc,

c = 0;

• if 
√

δ > n + 2, then

pc = pS(n + μ1) = +∞,

γ =
{

2γF (p,n + κ), for 1 < p ≤ p∗,

γS(p,n + μ1), for p∗ < p < pc,

c =

⎧⎪⎪⎨⎪⎪⎩
1 − sgn δ, for 1 < p < p∗,

2 − sgn δ, for p = p∗,

0, for p∗ < p < pc.

Now that the definitions of pc, pc and T̃ , S̃ are clear, we can go further.

4.4. Proof for Theorem 2 and Theorem 4

As we said, from our computations we found the blow-up for 1 < p < pk = max{pc, pc} and 
the upper bound of the lifespan estimates Tε � min{T̃ , ̃S}. Observing that T̃ (ε), ̃S(ε) → +∞ for 
ε → 0 and comparing the relations (4.20) and (4.21), we get that T̃ ≶ S̃ if pγ ≷ γ . If pγ = γ , 
the exponent of the logarithm comes into play, indeed T̃ � S̃ if pc � c. Now, we need to consider 
two cases according to the fact that H0 = ∫Rn h(x)dx is positive or null.

Case H0 > 0. We can easily infer that pk = pμ1,δ(n) defined in (2.9). We establish the upper 
bound for the lifespan Tε without making distinctions according to the value of n + μ1. Taking 
in account that, for p > 1,

2p γF (p,n + κ) > γS(p,n + μ1) ⇐⇒

⎧⎪⎨⎪⎩
p > 1, if

√
δ ≥ n,

1 < p <
2

n − √
δ
, if n − 2 <

√
δ < n,

n − d∗ <
√

δ < n and n + μ1 > 1 =⇒pF (n + κ) <
2

n − √
δ
,

√
δ ≤ n − d∗ and 1 < p < pk =⇒q > 0,
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we have:

• if 
√

δ ≤ n − 2 and 1 < p < pk , then pγ < γ and so S̃ < T̃ ;
• if n − 2 <

√
δ < n − d∗ and

– if 1 < p < 2
n−√

δ
, then pγ > γ and so T̃ < S̃;

– if p = 2
n−√

δ
, then pγ = γ and pc ≥ c, so that T̃ ≤ S̃;

– if 2
n−√

δ
< p < pk , then pγ < γ , so that S̃ < T̃ ;

• if 
√

δ ≥ n − d∗ and if 1 < p < pk , then pγ > γ so that T̃ < S̃.

Case H0 = 0. From now on we will impose the additional hypothesis that μ1 > 0 (which can 
be relaxed to n + μ1 > 1).

Obviously, pF (n + κ + √
δ) ≤ pF (n + κ), hence again pk = pμ1,δ(n) defined in (2.9). Con-

sider that, for p > 1,

pγF (p,n + κ + √
δ) > γF (p,n + κ) ⇐⇒ √

δ < 2 and 1 < p < 1 + 2 − √
δ

n + κ + √
δ
;

2p γF (p,n + κ + √
δ) > γS(p,n + μ1) ⇐⇒ n = 1 and

√
δ < 1 and 1 < p <

2

1 + √
δ

.

If n ≥ 2, taking into account that

n − d∗ <
√

δ < n + 2 =⇒ 1 + 2 − √
δ

n + κ + √
δ

< p∗,

we can prove that pγ < γ for 1 < p < pk , and so S̃ < T̃ .
Suppose now that n = 1. Recall the definition (2.16) of θ and note that it satisfies sgnθ =

sgn{μ1 − 3}, and moreover that the following relations hold:

μ1 > 0 =⇒ 1 − d∗ < 1 and 1 + 2 − √
δ

n + κ + √
δ

< pS(1 + μ1),

0 < μ1 < 3 ⇐⇒ 1 − d∗ > 0,

0 < μ1 < 3 =⇒ |1 − d∗| > θ,

√
δ > −1 + d∗ =⇒ 2

1 + √
δ

< pS(1 + μ1),

θ <
√

δ < 3 =⇒ 1 + 2 − √
δ

n + κ + √
δ

< p∗ and
2

1 + √
δ

< p∗.

Recall also the definition (2.15) of r∗ ≡ r∗(μ1, δ) and Remark 2.9. Hence, we get that:

• if 
√

δ = 0, μ1 = 3 and if 1 < p < pk , then pγ > γ and so T̃ < S̃;
• if 

√
δ = 0 and μ1 = 3, or if 0 <

√
δ < 1, we have:

– if 1 < p < r∗, then pγ > γ and so T̃ < S̃;
– if p = r∗, then pγ = γ and pc ≤ c, so that S̃ ≤ T̃ ;
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– if r∗ < p < pk , then pγ < γ , so that S̃ < T̃ ;
• if 

√
δ ≥ 1 and if 1 < p < pk , then pγ < γ so that S̃ < T̃ .

At the end, recalling the definitions of γ, γ , c and c in the various cases and summing all up, 
we conclude the proof for Theorem 2 and Theorem 4.

4.5. Proof for Theorem 5

We will only sketch the demonstration, since it is a variation of the previous one. Let us 
introduce the functional

G0(t) =
∫
Rn

w(x, t)dx

and, as in [20,21], the bounded multiplier

m(t) := exp

(
ν1

(1 + t)1−β

1 − β

)
.

Choosing the test function φ = φ(x, s) in (2.19) to satisfy (4.1), deriving respect to the time and 
multiplying by m, we get that

[m(t)G′
0(t)]′ +

ν2

(1 + t)2 m(t)G0(t) = m(t)

∫
Rn

|w(x, t)|pdx,

and hence

G0(t) = G0(0) + m(0)G′
0(0)

t∫
0

m−1(s)ds

−
t∫

0

m−1(s)ds

s∫
0

m(r)
ν2

(1 + r)2 G0(r)dr

+
t∫

0

m−1(s)ds

s∫
0

m(r)dr

∫
Rn

|w(x, r)|pdx.

(4.22)

It is simple to see, by comparison argument, that G0 is positive. Indeed, by the hypothesis on 
initial data, we know that G0(0) = ∫Rn f (x)dx and G′

0(0) = ∫Rn g(x)dx are non-negative and 
not both zero. If G0(0) > 0, by continuity G0 is positive for small time. If G0(0) = 0 and G′(0) >
0, then G0 is increasing and again positive for small time t > 0. If we suppose that there exists 
a time t0 > 0 such that G0(t0) = 0, calculating (4.22) in t = t0 we get a contradiction, since the 
left-hand term would be zero and the right-hand term would be strictly positive. Then, G0 is 
positive for any time t > 0. Define now the functional G0 as the solution of the integral equation
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G0(t) = 1

2
G0(0) + m(0)

2
G′

0(0)t − m(0)

t∫
0

ds

s∫
0

ν2

(1 + r)2 G0(r)dr

+ m(0)

t∫
0

ds

s∫
0

dr

∫
Rn

|w(x, r)|pdx.

(4.23)

Since m(0) < m(t) < 1 for any t > 0 and ν2 < 0, we have that

G0(t) − G0(t) ≥ 1

2
G0(0) + m(0)

2
G′

0(0)t − m(0)

t∫
0

ds

s∫
0

ν2

(1 + r)2 [G0(r) − G0(r)]dr,

and, again by comparison argument, we infer that G0 ≥ G0. From (4.23) we get that G0 satisfies

G
′′
0(t) + m(0)ν2

(1 + t)2 G(t) = m(0)

∫
Rn

|w(x, t)|pdx,

which has the same structure of (4.2) with μ1 = 0 and μ2 = m(0)ν2. Setting

λ := 1 + √
δ, κ := −λ/2, G(t) := (1 + t)κ+λG0(t),

similarly as in Subsection 4.1 we obtain

G0(t) = G0(0)(1 + t)−κ + [κG0(0) + G
′
0(0)](1 + t)−κ

t∫
0

(1 + s)−λds

+ (1 + t)−κ

t∫
0

(1 + s)−λds

s∫
0

(1 + r)κ+λdr

∫
Rn

|w(x, r)|pdx

(4.24)

and then

G(t) �
t∫

T0

ds

s∫
T0

r−(n+κ+λ)(p−1)G(r)pdr, (4.25)

G(t) � εtλ. (4.26)

Now, to get the counterpart of (4.6), define the functional

G1(t) :=
∫
Rn

w(x, t)ψ1(x, t)dx,

with ψ1 defined in (4.9). After taking a derivative respect to the time in the definition of energy 
solution (2.19) and multiplying both of its sides with m(t), we have that
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d

dt

⎧⎨⎩m(t)

∫
Rn

wt (x, t)φ(x, t)dx

⎫⎬⎭
+ m(t)

∫
Rn

{−wt(x, t)φt (x, t) − w(x, t)�φ(x, t)}dx

= − m(t)

∫
Rn

ν2

(1 + t)2 w(x, t)φ(x, t)dx + m(t)

∫
Rn

|w(x, t)|pφ(x, t)dx.

By integration on [0, t] we get

m(t)

∫
Rn

wt (x, t)φ(x, t)dx − m(0)ε

∫
Rn

g(x)φ(x,0)dx

− m(t)

∫
Rn

w(x, t)φt (x, t)dx + m(0)ε

∫
Rn

f (x)φt (x,0)dx

+
t∫

0

ds

∫
Rn

m(s)
ν1

(1 + s)β
w(x, s)φt (x, s)dx

+
t∫

0

ds

∫
Rn

m(s)w(x, s)φtt (x, s)dx −
t∫

0

ds

∫
Rn

m(s)w(x, s)�φ(x, s)

= −
t∫

0

ds

∫
Rn

m(s)
ν2

(1 + s)2 w(x, s)φ(x, s)dx

+
t∫

0

ds

∫
Rn

m(s)|w(x, s)|pφ(x, s)dx.

Setting φ(x, t) = ψ1(x, t) = e−t φ1(x) on suppw and recalling the bounds on the multiplier m(t), 
we obtain

G′
1(t) + 2G1(t) ≥ m(0)G′

1(0) + 2m(0)G1(0)

+ m(0)

t∫
0

{
ν1

(1 + s)β
− ν2

(1 + s)2

}
G1(s)ds

+ m(0)

t∫
0

ds

∫
Rn

|w(x, s)|pdx.

Integrating the above inequality over [0, t] after a multiplication by e2t , we get
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G1(t) ≥ G1(0)e−2t + m(0){G′
1(0) + 2G1(0)}1 − e−2t

2

+ m(0)e−2t

t∫
0

e2sds

s∫
0

{
ν1

(1 + r)β
− ν2

(1 + r)2

}
G1(r)dr

+ m(0)e−2t

t∫
0

e2sds

s∫
0

dr

∫
Rn

|w(x, r)|pφ(x, r)dx,

from which, thanks again to a comparison argument, we infer that G1 is non-negative, and so, 
neglecting the last two terms in the above inequality, it is easy to reach

G1(t) � ε for t � 1.

Hence, we have also ∫
Rn

|w(x, t)|pdx � εp(1 + t)−(n−1)
p
2 +n−1 for t � 1,

and so, taking into account (4.24), it holds

G0(t) � εp(1 + t)−κ

t∫
T1

(1 + s)−λds

s∫
T1

(1 + r)q+√
δ−1dr for t ≥ T1,

for some T1 > 0, where

q ≡ q(p) := −1 + √
δ

2
− (n − 1)

p

2
+ n + 1.

Finally, we obtain the inequality analogous to (4.6), i.e.

G(t) � εp

⎧⎪⎪⎨⎪⎪⎩
tλ+q if q > 0,

tλ ln(1 + t) if q = 0,

tλ if q < 0.

(4.27)

Thanks to (4.25), (4.26) and (4.27) and applying the Kato’s type lemma as in Subsection 4.3, we 
can conclude the proof of Theorem 5.
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