5 research outputs found

    How Fraudster Detection Contributes to Robust Recommendation

    Full text link
    The adversarial robustness of recommendation systems under node injection attacks has received considerable research attention. Recently, a robust recommendation system GraphRfi was proposed, and it was shown that GraphRfi could successfully mitigate the effects of injected fake users in the system. Unfortunately, we demonstrate that GraphRfi is still vulnerable to attacks due to the supervised nature of its fraudster detection component. Specifically, we propose a new attack metaC against GraphRfi, and further analyze why GraphRfi fails under such an attack. Based on the insights we obtained from the vulnerability analysis, we build a new robust recommendation system PDR by re-designing the fraudster detection component. Comprehensive experiments show that our defense approach outperforms other benchmark methods under attacks. Overall, our research demonstrates an effective framework of integrating fraudster detection into recommendation to achieve adversarial robustness

    Black-Box Attacks against Signed Graph Analysis via Balance Poisoning

    Full text link
    Signed graphs are well-suited for modeling social networks as they capture both positive and negative relationships. Signed graph neural networks (SGNNs) are commonly employed to predict link signs (i.e., positive and negative) in such graphs due to their ability to handle the unique structure of signed graphs. However, real-world signed graphs are vulnerable to malicious attacks by manipulating edge relationships, and existing adversarial graph attack methods do not consider the specific structure of signed graphs. SGNNs often incorporate balance theory to effectively model the positive and negative links. Surprisingly, we find that the balance theory that they rely on can ironically be exploited as a black-box attack. In this paper, we propose a novel black-box attack called balance-attack that aims to decrease the balance degree of the signed graphs. We present an efficient heuristic algorithm to solve this NP-hard optimization problem. We conduct extensive experiments on five popular SGNN models and four real-world datasets to demonstrate the effectiveness and wide applicability of our proposed attack method. By addressing these challenges, our research contributes to a better understanding of the limitations and resilience of robust models when facing attacks on SGNNs. This work contributes to enhancing the security and reliability of signed graph analysis in social network modeling. Our PyTorch implementation of the attack is publicly available on GitHub: https://github.com/JialongZhou666/Balance-Attack.git

    Coupled-Space Attacks against Random-Walk-based Anomaly Detection

    Full text link
    Random Walks-based Anomaly Detection (RWAD) is commonly used to identify anomalous patterns in various applications. An intriguing characteristic of RWAD is that the input graph can either be pre-existing or constructed from raw features. Consequently, there are two potential attack surfaces against RWAD: graph-space attacks and feature-space attacks. In this paper, we explore this vulnerability by designing practical coupled-space attacks, investigating the interplay between graph-space and feature-space attacks. To this end, we conduct a thorough complexity analysis, proving that attacking RWAD is NP-hard. Then, we proceed to formulate the graph-space attack as a bi-level optimization problem and propose two strategies to solve it: alternative iteration (alterI-attack) or utilizing the closed-form solution of the random walk model (cf-attack). Finally, we utilize the results from the graph-space attacks as guidance to design more powerful feature-space attacks (i.e., graph-guided attacks). Comprehensive experiments demonstrate that our proposed attacks are effective in enabling the target nodes from RWAD with a limited attack budget. In addition, we conduct transfer attack experiments in a black-box setting, which show that our feature attack significantly decreases the anomaly scores of target nodes. Our study opens the door to studying the coupled-space attack against graph anomaly detection in which the graph space relies on the feature space.Comment: 13 page
    corecore