2,492 research outputs found
An online model composition tool for system biology models
Background: There are multiple representation formats for Systems Biology computational models, and the
Systems Biology Markup Language (SBML) is one of the most widely used. SBML is used to capture, store, and
distribute computational models by Systems Biology data sources (e.g., the BioModels Database) and researchers.
Therefore, there is a need for all-in-one web-based solutions that support advance SBML functionalities such as
uploading, editing, composing, visualizing, simulating, querying, and browsing computational models.
Results: We present the design and implementation of the Model Composition Tool (Interface) within the PathCaseSB (PathCase Systems Biology) web portal. The tool helps users compose systems biology models to facilitate the
complex process of merging systems biology models. We also present three tools that support the model
composition tool, namely, (1) Model Simulation Interface that generates a visual plot of the simulation according to
user’s input, (2) iModel Tool as a platform for users to upload their own models to compose, and (3) SimCom Tool
that provides a side by side comparison of models being composed in the same pathway. Finally, we provide a
web site that hosts BioModels Database models and a separate web site that hosts SBML Test Suite models.
Conclusions: Model composition tool (and the other three tools) can be used with little or no knowledge of the
SBML document structure. For this reason, students or anyone who wants to learn about systems biology will
benefit from the described functionalities. SBML Test Suite models will be a nice starting point for beginners. And,
for more advanced purposes, users will able to access and employ models of the BioModels Database as well
Using gamma+jets Production to Calibrate the Standard Model Z(nunu)+jets Background to New Physics Processes at the LHC
The irreducible background from Z(nunu)+jets, to beyond the Standard Model
searches at the LHC, can be calibrated using gamma+jets data. The method
utilises the fact that at high vector boson pT, the event kinematics are the
same for the two processes and the cross sections differ mainly due to the
boson-quark couplings. The method relies on a precise prediction from theory of
the Z/gamma cross section ratio at high pT, which should be insensitive to
effects from full event simulation. We study the Z/gamma ratio for final states
involving 1, 2 and 3 hadronic jets, using both the leading-order parton shower
Monte Carlo program Pythia8 and a leading-order matrix element program Gambos.
This enables us both to understand the underlying parton dynamics in both
processes, and to quantify the theoretical systematic uncertainties in the
ratio predictions. Using a typical set of experimental cuts, we estimate the
net theoretical uncertainty in the ratio to be of order 7%, when obtained from
a Monte Carlo program using multiparton matrix-elements for the hard process.
Uncertainties associated with full event simulation are found to be small. The
results indicate that an overall accuracy of the method, excluding statistical
errors, of order 10% should be possible.Comment: 22 pages, 14 figures; Accepted for publication by JHE
The treatment of the infrared region in perturbative QCD
We discuss the contribution coming from the infrared region to NLO matrix
elements and/or coefficient functions of hard QCD processes. Strictly speaking,
this contribution is not known theoretically, since it is beyond perturbative
QCD. For DGLAP evolution all the infrared contributions are collected in the
phenomenological input parton distribution functions (PDFs), at some relatively
low scale Q_0; functions which are obtained from a fit to the `global' data.
However dimensional regularization sometimes produces a non-zero result coming
from the infrared region. Instead of this conventional regularization
treatment, we argue that the proper procedure is to first subtract from the NLO
matrix element the contribution already generated at the same order in \alpha_s
by the LO DGLAP splitting function convoluted with the LO matrix element. This
prescription eliminates the logarithmic infrared divergence, giving a
well-defined result which is consistent with the original idea that everything
below Q_0 is collected in the PDF input. We quantify the difference between the
proposed treatment and the conventional approach using low-mass Drell-Yan
production and deep inelastic electron-proton scattering as examples; and
discuss the potential impact on the `global' PDF analyses. We present arguments
to show that the difference cannot be regarded as simply the use of an
alternative factorization scheme.Comment: 15 pages, 5 figures, title changed, text considerably modified to
improve presentation, and discussion section enlarge
Demagnetization of Quantum Dot Nuclear Spins: Breakdown of the Nuclear Spin Temperature Approach
The physics of interacting nuclear spins arranged in a crystalline lattice is
typically described using a thermodynamic framework: a variety of experimental
studies in bulk solid-state systems have proven the concept of a spin
temperature to be not only correct but also vital for the understanding of
experimental observations. Using demagnetization experiments we demonstrate
that the mesoscopic nuclear spin ensemble of a quantum dot (QD) can in general
not be described by a spin temperature. We associate the observed deviations
from a thermal spin state with the presence of strong quadrupolar interactions
within the QD that cause significant anharmonicity in the spectrum of the
nuclear spins. Strain-induced, inhomogeneous quadrupolar shifts also lead to a
complete suppression of angular momentum exchange between the nuclear spin
ensemble and its environment, resulting in nuclear spin relaxation times
exceeding an hour. Remarkably, the position dependent axes of quadrupolar
interactions render magnetic field sweeps inherently non-adiabatic, thereby
causing an irreversible loss of nuclear spin polarization.Comment: 15 pages, 3 figure
A study protocol to investigate the relationship between dietary fibre intake and fermentation, colon cell turnover, global protein acetylation and early carcinogenesis: the FACT study
Background: A number of studies, notably EPIC, have shown a descrease in colorectal cancer risk associated with increased fibre consumption. Whilst the underlying mechanisms are likely to be multifactorial, production of the short-chain fatty-acid butyrate fro butyratye is frequently cited as a major potential contributor to the effect. Butyrate inhibits histone deacetylases, which work on a wide range of proteins over and above histones. We therefore hypothesized that alterations in the acetylated proteome may be associated with a cancer risk phenotype in the colorectal mucosa, and that such alterations are candidate biomarkers for effectiveness of fibre interventions in cancer prevention.
Methods an design: There are two principal arms to this study: (i) a cross-sectional study (FACT OBS) of 90 subjects recruited from gastroenterology clinics and; (ii) an intervention trial in 40 subjects with an 8 week high fibre intervention. In both studies the principal goal is to investigate a link between fibre intake, SCFA production and global protein acetylation. The primary measure is level of faecal butyrate, which it is hoped will be elevated by moving subjects to a high fibre diet. Fibre intakes will be estimated in the cross-sectional group using the EPIC Food Frequency Questionnaire. Subsidiary measures of the effect of butyrate on colon mucosal function and precancerous phenotype will include measures of apoptosis, apoptotic regulators cell cycle and cell division.
Discussion: This study will provide a new level of mechanistic data on alterations in the functional proteome in response to the colon microenvironment which may underwrite the observed cancer preventive effect of fibre. The study may yield novel candidate biomarkers of fibre fermentation and colon mucosal function
Molecular Valves for Controlling Gas Phase Transport Made from Discrete Angstrom-Sized Pores in Graphene
An ability to precisely regulate the quantity and location of molecular flux
is of value in applications such as nanoscale 3D printing, catalysis, and
sensor design. Barrier materials containing pores with molecular dimensions
have previously been used to manipulate molecular compositions in the gas
phase, but have so far been unable to offer controlled gas transport through
individual pores. Here, we show that gas flux through discrete angstrom-sized
pores in monolayer graphene can be detected and then controlled using
nanometer-sized gold clusters, which are formed on the surface of the graphene
and can migrate and partially block a pore. In samples without gold clusters,
we observe stochastic switching of the magnitude of the gas permeance, which we
attribute to molecular rearrangements of the pore. Our molecular valves could
be used, for example, to develop unique approaches to molecular synthesis that
are based on the controllable switching of a molecular gas flux, reminiscent of
ion channels in biological cell membranes and solid state nanopores.Comment: to appear in Nature Nanotechnolog
Randomized controlled trial of a good practice approach to treatment of childhood obesity in Malaysia: Malaysian childhood obesity treatment trial (MASCOT)
Context. Few randomized controlled trials (RCTs) of interventions for the treatment of childhood obesity have taken place outside the Western world. Aim. To test whether a good practice intervention for the treatment of childhood obesity would have a greater impact on weight status and other outcomes than a control condition in Kuala Lumpur, Malaysia. Methods. Assessor-blinded RCT of a treatment intervention in 107 obese 7- to 11-year olds. The intervention was relatively low intensity (8 hours contact over 26 weeks, group based), aiming to change child sedentary behavior, physical activity, and diet using behavior change counselling. Outcomes were measured at baseline and six months after the start of the intervention. Primary outcome was BMI z-score, other outcomes were weight change, health-related quality of life (Peds QL), objectively measured physical activity and sedentary behavior (Actigraph accelerometry over 5 days). Results. The intervention had no significant effect on BMI z score relative to control. Weight gain was reduced significantly in the intervention group compared to the control group (+1.5 kg vs. +3.5 kg, respectively, t-test p < 0.01). Changes in health-related quality of life and objectively measured physical activity and sedentary behavior favored the intervention group. Conclusions. Treatment was associated with reduced rate of weight gain, and improvements in physical activity and quality of life. More substantial benefits may require longer term and more intensive interventions which aim for more substantive lifestyle changes
QCD Coherence and the Top Quark Asymmetry
Coherent QCD radiation in the hadroproduction of top quark pairs leads to a
forward--backward asymmetry that grows more negative with increasing transverse
momentum of the pair. This feature is present in Monte Carlo event generators
with coherent parton showering, even though the production process is treated
at leading order and has no intrinsic asymmetry before showering. In addition,
depending on the treatment of recoils, showering can produce a positive
contribution to the inclusive asymmetry. We explain the origin of these
features, compare them in fixed-order calculations and the Herwig++, Pythia and
Sherpa event generators, and discuss their implications.Comment: 28 pages, 11 figures, 2 table
Recommended from our members
The combined diabetes and renal control trial (C-DIRECT) - a feasibility randomised controlled trial to evaluate outcomes in multi-morbid patients with diabetes and on dialysis using a mixed methods approach
Background: This cluster randomised controlled trial set out to investigate the feasibility and acceptability of the “Combined Diabetes and Renal Control Trial” (C-DIRECT) intervention, a nurse-led intervention based on motivational interviewing and self-management in patients with coexisting end stage renal diseases and diabetes mellitus (DM ESRD). Its efficacy to improve glycaemic control, as well as psychosocial and self-care outcomes were also evaluated as secondary outcomes.
Methods: An assessor-blinded, clustered randomised-controlled trial was conducted with 44 haemodialysis patients with DM ESRD and ≥ 8% glycated haemoglobin (HbA1c), in dialysis centres across Singapore. Patients were randomised according to dialysis shifts. 20 patients were assigned to intervention and 24 were in usual care. The C-DIRECT intervention consisted of three weekly chair-side sessions delivered by diabetes specialist nurses. Data on recruitment, randomisation, and retention, and secondary outcomes such as clinical endpoints, emotional distress, adherence, and self-management skills measures were obtained at baseline and at 12 weeks follow-up. A qualitative evaluation using interviews was conducted at the end of the trial.
Results: Of the 44 recruited at baseline, 42 patients were evaluated at follow-up. One patient died, and one discontinued the study due to deteriorating health. Recruitment, retention, and acceptability rates of C-DIRECT were generally satisfactory HbA1c levels decreased in both groups, but C-DIRECT had more participants with HbA1c < 8% at follow up compared to usual care. Significant improvements in role limitations due to physical health were noted for C-DIRECT whereas levels remained stable in usual care. No statistically significant differences between groups were observed for other clinical markers and other patient-reported outcomes. There were no adverse effects.
Conclusions: The trial demonstrated satisfactory feasibility. A brief intervention delivered on bedside as part of routine dialysis care showed some benefits in glycaemic control and on QOL domain compared with usual care, although no effect was observed in other secondary outcomes. Further research is needed to design and assess interventions to promote diabetes self-management in socially vulnerable patients
Bidirectional lipid droplet velocities are controlled by differential binding strengths of HCV Core DII protein
Host cell lipid droplets (LD) are essential in the hepatitis C virus (HCV) life cycle and are targeted by the viral capsid core protein. Core-coated LDs accumulate in the perinuclear region and facilitate viral particle assembly, but it is unclear how mobility of these LDs is directed by core. Herein we used two-photon fluorescence, differential interference contrast imaging, and coherent anti-Stokes Raman scattering microscopies, to reveal novel core-mediated changes to LD dynamics. Expression of core protein’s lipid binding domain II (DII-core) induced slower LD speeds, but did not affect directionality of movement on microtubules. Modulating the LD binding strength of DII-core further impacted LD mobility, revealing the temporal effects of LD-bound DII-core. These results for DII-core coated LDs support a model for core-mediated LD localization that involves core slowing down the rate of movement of LDs until localization at the perinuclear region is accomplished where LD movement ceases. The guided localization of LDs by HCV core protein not only is essential to the viral life cycle but also poses an interesting target for the development of antiviral strategies against HCV
- …