138 research outputs found

    Preparation of Dual Functionalized Surfaces for Covalent Immobilization of BMP-6 and Adhesive Ligands for Biological Applications

    Get PDF
    The median age of our population causes osteoporosis, bone fractures and disorders, which are also caused by multiple myeloma. In the past 25 years, regenerative medicine had gained in importance, especially for regeneration and renewal of bone tissue, which consists of different cell types composed in a very complex architecture. The growth factor bone morphogenetic protein 6 (BMP-6) belongs to the transforming growth factor ÎČ (TGF- ÎČ) superfamily and it induces the differentiation of mesenchymal stem cells into mature osteoblasts in bone leading to new bone formation. Besides induction of osteogenic differentiation, BMP-6 is also known to induce cell death in multiple myeloma cells in high concentrations. However, a systemic application is not practicable, since uncontrolled diffusion causes a wide range of side-effects. Immobilization of growth factors allows local treatment of bone fractures and defects, while it prevents uncontrolled release of growth factors. Furthermore, the required amount of growth factors can be reduced tremendously. The objective of this work was the covalent immobilization of BMP-6 co-presented with clicked integrin ligands on a structured gold nanoparticle (AuNP) platform, using blockcopolymer micellar nanolithography (BCMN) developed by Prof. Spatz and co-workers, to study integrin signaling in connection with growth factor responses. BMP-6 was selectively bound to gold nanoparticles organized in a hexagonal structure on the surface allowing to control the amount and density on the surface. I showed that surface co-presentation of BMP-6 and RGD or α5ÎČ1 integrin selective ligand promotes SMAD1/5 phosphorylation and osteogenic differentiation of the standard model system C2C12, even at amounts as low as 1 ng, whereas soluble BMP-6 application is significantly less effective. Additionally, BMP-6 was immobilized on gold nanostructured polyethylene glycol diacrylamide (PEG-DA) hydrogels containing different concentrations of cRGD in order to study the influence of the stiffness on the cell signaling. Furthermore, this approach was used to investigate the effect of immobilized BMP-6 in low doses on the multiple myeloma cell line OPM-2 to induce cell death. This approach provides for the first time the successful presentation of BMP-6 in small and defined amounts on surfaces in combination with adhesive ligands. Furthermore, covalent immobilization hinders protein release while maintaining the biological activity of the growth factor

    Photoproduction off Nuclei and Point-like Photon Interactions Part I: Cross Sections and Nuclear Shadowing

    Full text link
    High energy photoproduction off nuclear targets is studied within the Glauber-Gribov approximation. The photon is assumed to interact as a qqˉq\bar{q}-system according to the Generalized Vector Dominance Model and as a ``bare photon'' in direct scattering processes with target nucleons. We calculate total cross sections for interactions of photons with nuclei taking into account coherence length effects and point-like interactions of the photon. Results are compared to data on photon-nucleus cross sections, nuclear shadowing, and quasi- elastic ρ\rho-production. Extrapolations of cross sections and of the shadowing behaviour to high energies are given.Comment: 15 pages, 12 figure

    Energy and Color Flow in Dijet Rapidity Gaps

    Get PDF
    When rapidity gaps in high-pTp_T dijet events are identified by energy flow in the central region, they may be calculated from factorized cross sections in perturbative QCD, up to corrections that behave as inverse powers of the central region energy. Although power-suppressed corrections may be important, a perturbative calculation of dijet rapidity gaps in ppˉ{\rm p}\bar{\rm p} scattering successfully reproduces the overall features observed at the Tevatron. In this formulation, the average color content of the hard scattering is well-defined. We find that hard dijet rapidity gaps in quark-antiquark scattering are not due to singlet exchange alone.Comment: 9 pages, LaTeX, 2 epsi figure

    Dynamical parton distributions of the nucleon and very small-x physics

    Full text link
    Utilizing recent DIS measurements (F_{2,L}) and data on dilepton and high-E_{T} jet production we determine the dynamical parton distributions of the nucleon generated radiatively from valence-like positive input distributions at optimally chosen low resolution scales. These are compared with `standard' distributions generated from positive input distributions at some fixed and higher resolution scale. It is shown that up to the next to leading order NLO(\bar{MS}, DIS) of perturbative QCD considered in this paper, the uncertainties of the dynamical distributions are, as expected, smaller than those of their standard counterparts. This holds true in particular in the presently unexplored extremely small-x region relevant for evaluating ultrahigh energy cross sections in astrophysical applications. It is noted that our new dynamical distributions are compatible, within the presently determined uncertainties, with previously determined dynamical parton distributions.Comment: 21 pages, 2 tables, 16 figures, v2: added Ref.[60], replaced Fig.

    D* Production in Deep Inelastic Scattering at HERA

    Get PDF
    This paper presents measurements of D^{*\pm} production in deep inelastic scattering from collisions between 27.5 GeV positrons and 820 GeV protons. The data have been taken with the ZEUS detector at HERA. The decay channel D∗+→(D0→K−π+)π+D^{*+}\to (D^0 \to K^- \pi^+) \pi^+ (+ c.c.) has been used in the study. The e+pe^+p cross section for inclusive D^{*\pm} production with 5<Q2<100GeV25<Q^2<100 GeV^2 and y<0.7y<0.7 is 5.3 \pms 1.0 \pms 0.8 nb in the kinematic region {1.3<pT(D∗±)<9.01.3<p_T(D^{*\pm})<9.0 GeV and ∣η(D∗±)∣<1.5| \eta(D^{*\pm}) |<1.5}. Differential cross sections as functions of p_T(D^{*\pm}), η(D∗±),W\eta(D^{*\pm}), W and Q2Q^2 are compared with next-to-leading order QCD calculations based on the photon-gluon fusion production mechanism. After an extrapolation of the cross section to the full kinematic region in p_T(D^{*\pm}) and η\eta(D^{*\pm}), the charm contribution F2ccˉ(x,Q2)F_2^{c\bar{c}}(x,Q^2) to the proton structure function is determined for Bjorken xx between 2 ⋅\cdot 10−4^{-4} and 5 ⋅\cdot 10−3^{-3}.Comment: 17 pages including 4 figure
    • 

    corecore