2,455 research outputs found

    Variance and Skewness in the FIRST survey

    Get PDF
    We investigate the large-scale clustering of radio sources in the FIRST 1.4-GHz survey by analysing the distribution function (counts in cells). We select a reliable sample from the the FIRST catalogue, paying particular attention to the problem of how to define single radio sources from the multiple components listed. We also consider the incompleteness of the catalogue. We estimate the angular two-point correlation function w(Ξ)w(\theta), the variance Κ2\Psi_2, and skewness Κ3\Psi_3 of the distribution for the various sub-samples chosen on different criteria. Both w(Ξ)w(\theta) and Κ2\Psi_2 show power-law behaviour with an amplitude corresponding a spatial correlation length of r0∌10h−1r_0 \sim 10 h^{-1}Mpc. We detect significant skewness in the distribution, the first such detection in radio surveys. This skewness is found to be related to the variance through Κ3=S3(Κ2)α\Psi_3=S_3(\Psi_2)^{\alpha}, with α=1.9±0.1\alpha=1.9\pm 0.1, consistent with the non-linear gravitational growth of perturbations from primordial Gaussian initial conditions. We show that the amplitude of variance and skewness are consistent with realistic models of galaxy clustering.Comment: 13 pages, 21 inline figures, to appear in MNRA

    The 2dF gravitational lens survey

    Get PDF
    The 2 degree Field (2dF) galaxy redshift survey will involve obtaining approximately 2.5 x 10^5 spectra of objects previously identified as galaxy candidates on morphological grounds. Included in these spectra should be about ten gravitationally-lensed quasars, all with low-redshift galaxies as deflectors (as the more common lenses with high-redshift deflectors will be rejected from the survey as multiple point-sources). The lenses will appear as superpositions of galaxy and quasar spectra, and both cross-correlation techniques and principal components analysis should be able to identify candidates systematically. With the 2dF survey approximately half-completed it is now viable to begin a systematic search for these spectroscopic lenses, and the first steps of this project are described here.Comment: PASA (OzLens edition), in press; 4 pages, 0 figure

    Initial Conditions for Large Cosmological Simulations

    Full text link
    This technical paper describes a software package that was designed to produce initial conditions for large cosmological simulations in the context of the Horizon collaboration. These tools generalize E. Bertschinger's Grafic1 software to distributed parallel architectures and offer a flexible alternative to the Grafic2 software for ``zoom'' initial conditions, at the price of large cumulated cpu and memory usage. The codes have been validated up to resolutions of 4096^3 and were used to generate the initial conditions of large hydrodynamical and dark matter simulations. They also provide means to generate constrained realisations for the purpose of generating initial conditions compatible with, e.g. the local group, or the SDSS catalog.Comment: 12 pages, 11 figures, submitted to ApJ

    Using Wii technology to explore real spaces via virtual environments for people who are blind

    Get PDF
    Purpose - Virtual environments (VEs) that represent real spaces (RSs) give people who are blind the opportunity to build a cognitive map in advance that they will be able to use when arriving at the RS. Design - In this research study Nintendo Wii based technology was used for exploring VEs via the Wiici application. The Wiimote allows the user to interact with VEs by simulating walking and scanning the space. Finding - By getting haptic and auditory feedback the user learned to explore new spaces. We examined the participants' abilities to explore new simple and complex places, construct a cognitive map, and perform orientation tasks in the RS. Originality – To our knowledge, this finding presents the first virtual environment for people who are blind that allow the participants to scan the environment and by this to construct map model spatial representations

    Acoustic peaks and dips in the CMB power spectrum: observational data and cosmological constraints

    Get PDF
    The locations and amplitudes of three acoustic peaks and two dips in the last releases of the Boomerang, MAXIMA and DASI measurements of the cosmic microwave background (CMB) anisotropy power spectra as well as their statistical confidence levels are determined in a model-independent way. It is shown that the Boomerang-2001 data (Netterfield et al. 2001) fixes the location and amplitude of the first acoustic peak at more than 3\sigma confidence level. The next two peaks and dips are determined at a confidence level above 1\sigma but below 2\sigma. The locations and amplitudes of the first three peaks and two dips are 212+/-17, 5426+/-1218\mu K^2, 544+/-56, 2266+/-607\mu K^2, 843+/-35, 2077+/-876\mu K^2, 413+/-50, 1960+/-503\mu K^2, 746+/-89, 1605+/-650\mu K^2 respectively (1\sigma errors include statistical and systematic errors). The MAXIMA and DASI experiments give similar values for the extrema which they determine. The determined cosmological parameters from the CMB acoustic extrema data show good agreement with other determinations, especially with the baryon content as deduced from standard nucleosynthesis constraints. These data supplemented by the constraints from direct measurements of some cosmological parameters and data on large scale structure lead to a best-fit model which agrees with practically all the used experimental data within 1\sigma. The best-fit parameters are: \Omega_{\Lambda}=0.64^{+0.14}_{-0.27}, \Omega_{m}= 0.36^{+0.21}_{-0.11}, \Omega_b=0.047^{+0.093}_{-0.024}, n_s=1.0^{+0.59}_{-0.17}, h=0.65^{+0.35}_{-0.27} and \tau_c=0.15^{+0.95}_{-0.15} (plus/minus values show 1\sigma upper/lower limits obtained by marginalization over all other model parameters). The best-fit values of \Omega_{\nu} and T/S are close to zero, their 1\sigma upper limits are 0.17 and 1.7 respectively.Comment: 34 pages, 10 figures; accepted by ApJ; some corrections in the text are made and a few references are adde

    Intracluster Comptonization of the CMB: Mean Spectral Distrortion and Cluster Number Counts

    Get PDF
    The mean sky-averaged Comptonization parameter, y, describing the scattering of the CMB by hot gas in clusters of galaxies is calculated in an array of flat and open cosmological and dark matter models. The models are globally normalized to fit cluster X-ray data, and intracluster gas is assumed to have evolved in a manner consistent with current observations. We predict values of y lower than the COBE/FIRAS upper limit. The corresponding values of the overall optical thickness to Compton scattering are < 10^{-4} for relevant parameter values. Of more practical importance are number counts of clusters across which a net flux (with respect to the CMB) higher than some limiting value can be detected. Such number counts are specifically predicted for the COBRAS/SAMBA and BOOMERANG missions.Comment: 23 pages, Latex, 11 PostScript figures, 5 PostScript tables, to appear in Ap

    Cosmological redshift distortion: deceleration, bias and density parameters from future redshift surveys of galaxies

    Get PDF
    The observed two-point correlation functions of galaxies in redshift space become anisotropic due to the geometry of the universe as well as due to the presence of the peculiar velocity field. On the basis of linear perturbation theory, we expand the induced anisotropies of the correlation functions with respect to the redshift zz, and obtain analytic formulae to infer the deceleration parameter q0q_0, the density parameter Ω0\Omega_0 and the derivative of the bias parameter dln⁥b/dzd\ln b/dz at z=0z=0 in terms of the observable statistical quantities. The present method does not require any assumption of the shape and amplitude of the underlying fluctuation spectrum, and thus can be applied to future redshift surveys of galaxies including the Sloan Digital Sky Survey. We also evaluate quantitatively the systematic error in estimating the value of ÎČ0≥Ω00.6/b\beta_0 \equiv \Omega_0^{0.6}/b from a galaxy redshift survey on the basis of a conventional estimator for ÎČ0\beta_0 which neglects both the geometrical distortion effect and the time evolution of the parameter ÎČ(z)\beta(z). If the magnitude limit of the survey is as faint as 18.5 (in B-band) as in the case of the Sloan Digital Sky Survey, the systematic error ranges between -20% and 10% depending on the cosmological parameters. Although such systematic errors are smaller than the statistical errors in the current surveys, they will dominate the expected statistical error for future surveys.Comment: 9 pages, 5 figs, aastex, ApJ in press, replaced version includes minor correction

    Combining cosmological datasets: hyperparameters and Bayesian evidence

    Get PDF
    A method is presented for performing joint analyses of cosmological datasets, in which the weight assigned to each dataset is determined directly by it own statistical properties. The weights are considered in a Bayesian context as a set of hyperparameters, which are then marginalised over in order to recover the posterior distribution as a function only of the cosmological parameters of interest. In the case of a Gaussian likelihood function, this marginalisation may be performed analytically. Calculation of the Bayesian evidence for the data, with and without the introduction of hyperparameters, enables a direct determination of whether the data warrant the introduction of weights into the analysis; this generalises the standard likelihood ratio approach to model comparison. The method is illustrated by application to the classic toy problem of fitting a straight line to a set of data. A cosmological illustration of the technique is also presented, in which the latest measurements of the cosmic microwave background power spectrum are used to infer constraints on cosmological parameters.Comment: 12 pages, 6 figures, submitted to MNRA
    • 

    corecore