3 research outputs found

    β-Catenin (CTNNB1) Promotes Preovulatory Follicular Development but Represses LH-Mediated Ovulation and Luteinization

    No full text
    Wingless-type mouse mammary tumor virus integration site family (WNT)/β-catenin (CTNNB1) pathway components are expressed in ovarian granulosa cells, direct female gonad development, and are regulated by the pituitary gonadotropins. However, the in vivo functions of CTNNB1 during preovulatory follicular development, ovulation, and luteinization remain unclear. Using a mouse model Ctnnb1(Ex3)fl/fl;Cyp19-Cre (Ctnnb1(Ex3)gc−/−), expressing dominant stable CTNNB1 in granulosa cells of small antral and preovulatory follicles, we show that CTNNB1 facilitates FSH-induced follicular growth and decreases the follicle atresia (granulosa cell apoptosis). At the molecular level, WNT signaling and FSH synergistically promote the expression of genes required for cell proliferation and estrogen biosynthesis, but decrease FOXO1, which negatively regulates proliferation and steroidogenesis. Conversely, dominant stable CTNNB1 represses LH-induced oocyte maturation, ovulation, luteinization, and progesterone biosynthesis. Specifically, granulosa cells in the Ctnnb1(Ex3)gc−/− mice showed compromised responses to the LH surge and decreased levels of the epidermal growth factor-like factors (Areg and Ereg) that in vivo and in vitro mediate LH action. One underlying mechanism by which CTNNB1 prevents LH responses is by reducing phosphorylation of cAMP-responsive element-binding protein, which is essential for the expression of Areg and Ereg. By contrast, depletion of Ctnnb1 using the Ctnnb1fl/fl;Cyp19-Cre mice did not alter FSH regulation of preovulatory follicular development or female fertility but dramatically enhanced LH induction of genes in granulosa cells in culture. Thus, CTNNB1 can enhance FSH and LH actions in antral follicles but overactivation of CTNNB1 negatively effects LH-induced ovulation and luteinization, highlighting the cell context-dependent and developmental stage-specific interactions of WNT/CTNNB1 pathway and G protein-coupled gonadotropin receptors in female fertility

    Convergence of 3′,5′-Cyclic Adenosine 5′-Monophosphate/Protein Kinase A and Glycogen Synthase Kinase-3β/β-Catenin Signaling in Corpus Luteum Progesterone Synthesis

    No full text
    Progesterone secretion by the steroidogenic cells of the corpus luteum (CL) is essential for reproduction. Progesterone synthesis is under the control of LH, but the exact mechanism of this regulation is unknown. It is established that LH stimulates the LH receptor/choriogonadotropin receptor, a G-protein coupled receptor, to increase cAMP and activate cAMP-dependent protein kinase A (PKA). In the present study, we tested the hypothesis that cAMP/PKA-dependent regulation of the Wnt pathway components glycogen synthase kinase (GSK)-3β and β-catenin contributes to LH-dependent steroidogenesis in luteal cells. We observed that LH via a cAMP/PKA-dependent mechanism stimulated the phosphorylation of GSK3β at N-terminal Ser9 causing its inactivation and resulted in the accumulation of β-catenin. Overexpression of N-terminal truncated β-catenin (Δ90 β-catenin), which lacks the phosphorylation sites responsible for its destruction, significantly augmented LH-stimulated progesterone secretion. In contrast, overexpression of a constitutively active mutant of GSK3β (GSK-S9A) reduced β-catenin levels and inhibited LH-stimulated steroidogenesis. Chromatin immunoprecipitation assays demonstrated the association of β-catenin with the proximal promoter of the StAR gene, a gene that expresses the steroidogenic acute regulatory protein, which is a cholesterol transport protein that controls a rate-limiting step in steroidogenesis. Collectively these data suggest that cAMP/PKA regulation of GSK3β/β-catenin signaling may contribute to the acute increase in progesterone production in response to LH
    corecore