192 research outputs found
The reaction 13C(alpha,n)16O: a background for the observation of geo-neutrinos
The absolute cross section of the C(,n)O reaction has
been measured at E = 0.8 to 8.0 MeV with an overall accuracy of 4%.
The precision is needed to subtract reliably a background in the observation of
geo-neutrinos, e.g. in the KamLAND detector.Comment: LaTex file, 13 pages including 3 ps figures. Any request to
[email protected]. Phys. Rev . C, to appea
The influence of carbon on the resistivity recovery of proton irradiated Fe–11at.% Cr alloys
AbstractThe effect of carbon on the point defect migration properties in Fe–Cr alloys with a concentration of 11 at.% Cr is studied by means of resistivity recovery measurements after low temperature proton irradiation. The presence of carbon mainly affects features of the resistivity recovery spectra in the temperature ranges of (a) 150–200K, which are linked to self-interstitial defects, and (b) 400–500K, which are probably due to vacancy and vacancy-carbon complexes. The experimental results are discussed in terms of the possible interactions of carbon with radiation defects and its influence on solute atom re-ordering
Extraction of thermal and electromagnetic properties in 45Ti
The level density and gamma-ray strength function of 45Ti have been
determined by use of the Oslo method. The particle-gamma coincidences from the
46Ti(p,d gamma)45Ti pick-up reaction with 32 MeV protons are utilized to obtain
gamma-ray spectra as function of excitation energy. The extracted level density
and strength function are compared with models, which are found to describe
these quantities satisfactorily. The data do not reveal any single-particle
energy gaps of the underlying doubly magic 40Ca core, probably due to the
strong quadruple deformation
Isospin Character of the Pygmy Dipole Resonance in 124Sn
The pygmy dipole resonance has been studied in the proton-magic nucleus 124Sn
with the (a,a'g) coincidence method at E=136 MeV. The comparison with results
of photon-scattering experiments reveals a splitting into two components with
different structure: one group of states which is excited in (a,a'g) as well as
in (g,g') reactions and a group of states at higher energies which is only
excited in (g,g') reactions. Calculations with the self-consistent relativistic
quasiparticle time-blocking approximation and the quasiparticle phonon model
are in qualitative agreement with the experimental results and predict a
low-lying isoscalar component dominated by neutron-skin oscillations and a
higher-lying more isovector component on the tail of the giant dipole
resonance
Charge density distributions and related form factors in neutron-rich light exotic nuclei
Charge form factors corresponding to proton density distributions in exotic
nuclei, such as He, Li, B and Be are calculated
and compared. The results can be used as tests of various theoretical models
for the exotic nuclei structure in possible future experiments using a
colliding electron-exotic nucleus storage ring. The result of such a comparison
would show the effect of the neutron halo or skin on the proton distributions
in exotic nuclei.Comment: 11 pages, 4 figures, to be published in International Journal of
Modern Physics
Probing the 6He halo structure with elastic and inelastic proton scattering
Proton elastic scattering and inelastic scattering to the first excited state
of 6He have been measured over a wide angular range using a 40.9A MeV 6He beam.
The data have been analyzed with a fully microscopic model of proton-nucleus
scattering using 6He wave functions generated from large space shell model
calculations. The inelastic scattering data show a remarkable sensitivity to
the halo structure of 6He.Comment: 9 pages, 3 figures. RevTeX. Replaced figure 3 with updated figur
Structure of low-lying states of C from proton elastic and inelastic scattering
NESTER PTH, expérience GANIL, équipement SISSITo probe the ground state and transition densities, elastic and inelastic scattering on a proton target were measured in inverse kinematics for the unstable C and C nuclei at 45.3 and 40.6 MeV/nucleon, respectively. The detection of the recoil proton was performed by the MUST telescope array, in coincidence with a wall of scintillators for the quasiprojectile. The differential cross sections for elastic and inelastic scattering to the first excited states are compared to the optical model calculations performed within the framework of the microscopic nucleon-nucleus Jeukenne-Lejeune-Mahaux potential. Elastic scattering is sensitive to the matter-root-mean square radius found to be 2.420.1 and 2.330.1 fm, for C, respectively. The transition densities from cluster and mean-field models are tested, and the cluster model predicts the correct order of magnitude of cross sections for the transitions of both isotopes. Using the Bohr-Mottelson prescription, a profile for the C transition density from the ground to the state is deduced from the data. The corresponding neutron transition matrix element is extracted: Mn=5.511.09 fm
Coulomb excitation of 73Ga
The B(E2; Ii -> If) values for transitions in 71Ga and 73Ga were deduced from
a Coulomb excitation experiment at the safe energy of 2.95 MeV/nucleon using
post-accelerated beams of 71,73Ga at the REX-ISOLDE on-line isotope mass
separator facility. The emitted gamma rays were detected by the
MINIBALL-detector array and B(E2; Ii->If) values were obtained from the yields
normalized to the known strength of the 2+ -> 0+ transition in the 120Sn
target. The comparison of these new results with the data of less neutron-rich
gallium isotopes shows a shift of the E2 collectivity towards lower excitation
energy when adding neutrons beyond N = 40. This supports conclusions from
previous studies of the gallium isotopes which indicated a structural change in
this isotopical chain between N = 40 and N = 42. Combined with recent
measurements from collinear laser spectroscopy showing a 1/2- spin and parity
for the ground state, the extracted results revealed evidence for a 1/2-; 3/2-
doublet near the ground state in 73 31Ga42 differing by at most 0.8 keV in
energy
The pygmy quadrupole resonance and neutron-skin modes in Sn-124
We present an extensive experimental study of the recently predicted pygmy quadrupole resonance (PQR) in Sn isotopes, where complementary probes were used. In this study, and experiments were performed on 124Sn. In both reactions, states below an excitation energy of 5 MeV were populated. The E2 strength integrated over the full transition densities could be extracted from the experiment, while the experiment at the chosen kinematics strongly favors the excitation of surface modes because of the strong α-particle absorption in the nuclear interior. The excitation of such modes is in accordance with the quadrupole-type oscillation of the neutron skin predicted by a microscopic approach based on self-consistent density functional theory and the quasiparticle-phonon model (QPM). The newly determined γ-decay branching ratios hint at a non-statistical character of the E2 strength, as it has also been recently pointed out for the case of the pygmy dipole resonance (PDR). This allows us to distinguish between PQR-type and multiphonon excitations and, consequently, supports the recent first experimental indications of a PQR in 124Sn
- …