195 research outputs found

    FTO variant rs9939609 is associated with body mass index and waist circumference, but not with energy intake or physical activity in European- and African-American youth

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genome-wide association studies found common variants in the fat mass and obesity-associated (<it>FTO</it>) gene associated with adiposity in Caucasians and Asians but the association was not confirmed in African populations. Association of <it>FTO </it>variants with insulin resistance and energy intake showed inconsistent results in previous studies. This study aimed to assess the influence of <it>FTO </it>variant rs9939609 on adiposity, insulin resistance, energy intake and physical activity in European - (EA) and African-American (AA) youth.</p> <p>Methods</p> <p>We conducted a cross-sectional study in EA and AA youths. One thousand, nine hundred and seventy-eight youths (48.2% EAs, 47.1% male, mean age 16.5 years) had measures of anthropometry. Percent body fat (%BF) was measured by dual-energy X-ray absorptiometry, visceral adipose tissue (VAT) and subcutaneous abdominal adipose tissue (SAAT) by magnetic resonance imaging. Energy intake and physical activity were based on self report from up to 7 24-hour recalls. Physical activity was also measured by accelerometry.</p> <p>Results</p> <p><it>FTO </it>rs9939609 was significantly associated with body mass index (BMI) (<it>P </it>= 0.01), weight (<it>P </it>= 0.03) and waist circumference (<it>P </it>= 0.04), with per-allele effects of 0.4 kg/m<sup>2</sup>, 1.3 kg and 0.8 cm, respectively. No significant association was found between rs9939609 and %BF, VAT, SAAT or insulin resistance (<it>P </it>> 0.05), or between rs9939609 and energy intake or vigorous physical activity (<it>P </it>> 0.05). No significant interactions of rs9939609 with ethnicity, gender, energy intake or physical activity were observed (<it>P </it>> 0.05).</p> <p>Conclusions</p> <p>The <it>FTO </it>variant rs9939609 is modestly associated with BMI and waist circumference, but not with energy intake or physical activity. Moreover, these effects were similar for EAs and AAs. Improved understanding of the effect of the <it>FTO </it>variant will offer new insights into the etiology of excess adiposity.</p

    Characterization of a prenatally assessed de novo supernumerary minute ring chromosome 20 in a phenotypically normal male

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The heterogeneous group of small supernumerary marker chromosomes (sSMCs) presents serious counseling problems, especially if they are present de novo and diagnosed prenatally. The incidence has been estimated at 1 in 1000 prenatal samples. We present a case of mosaic sSMC diagnosed prenatally after amniocentesis. The sSMC was characterized by various molecular cytogenetic techniques and determined to be a r(20) chromosome. After genetic counseling, the parents decided to continue the pregnancy, and a boy with minor phenotypic variants was born after 39 weeks of pregnancy. The case is compared with four other cases of prenatally detected r(20) mosaicism.</p> <p>Results</p> <p>Here we describe a 3 months old male child with normal pre- and postnatal development and with a de novo ring supernumerary marker chromosome in amniocytes cultures. Using new fluorescence in situ hybridization (FISH) techniques, three distinguishable sSMCs (cryptic mosaicism), all derived from chromosome 20, were observed, including ring and minute chromosomes. This heterogeneity was impossible to detect by the conventional G-banding technique or conventional FISH technique that were used before the application of new FISH techniques (subcentromere-specific multicolor-FISH [subcenM-FISH]) and a probe, specific for the 20p12.2 band. The sSMC present in 25% of the cells was present as r(20)(::p12.2~12.3->q11.1::)<abbrgrp><abbr bid="B5">5</abbr></abbrgrp>/r(20;20)(::p12.1->q11.1::q11.1 >p12.1::)<abbrgrp><abbr bid="B2">2</abbr></abbrgrp>/min(20;20)(:p12.1->q11.1::q11.1->p12.1:)<abbrgrp><abbr bid="B1">1</abbr></abbrgrp>. The final karyotype was 47,XY,+r(20)[25%]/46,XY[75%].</p> <p>Conclusion</p> <p>We emphasize the importance of application of molecular cytogenetics in a prenatally diagnostic laboratory and description of more cases to enable a better genetic counseling and risk evaluation.</p

    Integrative genomic analyses in adipocytes implicate DNA methylation in human obesity and diabetes

    Get PDF
    DNA methylation variations are prevalent in human obesity but evidence of a causative role in disease pathogenesis is limited. Here, we combine epigenome-wide association and integrative genomics to investigate the impact of adipocyte DNA methylation variations in human obesity. We discover extensive DNA methylation changes that are robustly associated with obesity (N = 190 samples, 691 loci in subcutaneous and 173 loci in visceral adipocytes, P 500 target genes, and identify putative methylation-transcription factor interactions. Through Mendelian Randomisation, we infer causal effects of methylation on obesity and obesity-induced metabolic disturbances at 59 independent loci. Targeted methylation sequencing, CRISPR-activation and gene silencing in adipocytes, further identifies regional methylation variations, underlying regulatory elements and novel cellular metabolic effects. Our results indicate DNA methylation is an important determinant of human obesity and its metabolic complications, and reveal mechanisms through which altered methylation may impact adipocyte functions

    Genome-Wide Association Study Identifies Two Novel Regions at 11p15.5-p13 and 1p31 with Major Impact on Acute-Phase Serum Amyloid A

    Get PDF
    Elevated levels of acute-phase serum amyloid A (A-SAA) cause amyloidosis and are a risk factor for atherosclerosis and its clinical complications, type 2 diabetes, as well as various malignancies. To investigate the genetic basis of A-SAA levels, we conducted the first genome-wide association study on baseline A-SAA concentrations in three population-based studies (KORA, TwinsUK, Sorbs) and one prospective case cohort study (LURIC), including a total of 4,212 participants of European descent, and identified two novel genetic susceptibility regions at 11p15.5-p13 and 1p31. The region at 11p15.5-p13 (rs4150642; p = 3.20×10−111) contains serum amyloid A1 (SAA1) and the adjacent general transcription factor 2 H1 (GTF2H1), Hermansky-Pudlak Syndrome 5 (HPS5), lactate dehydrogenase A (LDHA), and lactate dehydrogenase C (LDHC). This region explains 10.84% of the total variation of A-SAA levels in our data, which makes up 18.37% of the total estimated heritability. The second region encloses the leptin receptor (LEPR) gene at 1p31 (rs12753193; p = 1.22×10−11) and has been found to be associated with CRP and fibrinogen in previous studies. Our findings demonstrate a key role of the 11p15.5-p13 region in the regulation of baseline A-SAA levels and provide confirmative evidence of the importance of the 1p31 region for inflammatory processes and the close interplay between A-SAA, leptin, and other acute-phase proteins

    Genome-wide association analyses of physical activity and sedentary behavior provide insights into underlying mechanisms and roles in disease prevention

    Get PDF
    Although physical activity and sedentary behavior are moderately heritable, little is known about the mechanisms that influence these traits. Combining data for up to 703,901 individuals from 51 studies in a multi-ancestry meta-analysis of genome-wide association studies yields 99 loci that associate with self-reported moderate-to-vigorous intensity physical activity during leisure time (MVPA), leisure screen time (LST) and/or sedentary behavior at work. Loci associated with LST are enriched for genes whose expression in skeletal muscle is altered by resistance training. A missense variant in ACTN3 makes the alpha-actinin-3 filaments more flexible, resulting in lower maximal force in isolated type IIA muscle fibers, and possibly protection from exercise-induced muscle damage. Finally, Mendelian randomization analyses show that beneficial effects of lower LST and higher MVPA on several risk factors and diseases are mediated or confounded by body mass index (BMI). Our results provide insights into physical activity mechanisms and its role in disease prevention. Multi-ancestry meta-analyses of genome-wide association studies for self-reported physical activity during leisure time, leisure screen time, sedentary commuting and sedentary behavior at work identify 99 loci associated with at least one of these traits

    Genome-wide meta-analysis of common variant differences between men and women

    Get PDF
    The male-to-female sex ratio at birth is constant across world populations with an average of 1.06 (106 male to 100 female live births) for populations of European descent. The sex ratio is considered to be affected by numerous biological and environmental factors and to have a heritable component. The aim of this study was to investigate the presence of common allele modest effects at autosomal and chromosome X variants that could explain the observed sex ratio at birth. We conducted a large-scale genome-wide association scan (GWAS) meta-analysis across 51 studies, comprising overall 114 863 individuals (61 094 women and 53 769 men) of European ancestry and 2 623 828 common (minor allele frequency >0.05) single-nucleotide polymorphisms (SNPs). Allele frequencies were compared between men and women for directly-typed and imputed variants within each study. Forward-time simulations for unlinked, neutral, autosomal, common loci were performed under the demographic model for European populations with a fixed sex ratio and a random mating scheme to assess the probability of detecting significant allele frequency differences. We do not detect any genome-wide significant (P < 5 × 10−8) common SNP differences between men and women in this well-powered meta-analysis. The simulated data provided results entirely consistent with these findings. This large-scale investigation across ∼115 000 individuals shows no detectable contribution from common genetic variants to the observed skew in the sex ratio. The absence of sex-specific differences is useful in guiding genetic association study design, for example when using mixed controls for sex-biased trait

    Publisher Correction: Sex-dimorphic genetic effects and novel loci for fasting glucose and insulin variability

    Get PDF

    Multiple Loci Are Associated with White Blood Cell Phenotypes

    Get PDF
    White blood cell (WBC) count is a common clinical measure from complete blood count assays, and it varies widely among healthy individuals. Total WBC count and its constituent subtypes have been shown to be moderately heritable, with the heritability estimates varying across cell types. We studied 19,509 subjects from seven cohorts in a discovery analysis, and 11,823 subjects from ten cohorts for replication analyses, to determine genetic factors influencing variability within the normal hematological range for total WBC count and five WBC subtype measures. Cohort specific data was supplied by the CHARGE, HeamGen, and INGI consortia, as well as independent collaborative studies. We identified and replicated ten associations with total WBC count and five WBC subtypes at seven different genomic loci (total WBC count—6p21 in the HLA region, 17q21 near ORMDL3, and CSF3; neutrophil count—17q21; basophil count- 3p21 near RPN1 and C3orf27; lymphocyte count—6p21, 19p13 at EPS15L1; monocyte count—2q31 at ITGA4, 3q21, 8q24 an intergenic region, 9q31 near EDG2), including three previously reported associations and seven novel associations. To investigate functional relationships among variants contributing to variability in the six WBC traits, we utilized gene expression- and pathways-based analyses. We implemented gene-clustering algorithms to evaluate functional connectivity among implicated loci and showed functional relationships across cell types. Gene expression data from whole blood was utilized to show that significant biological consequences can be extracted from our genome-wide analyses, with effect estimates for significant loci from the meta-analyses being highly corellated with the proximal gene expression. In addition, collaborative efforts between the groups contributing to this study and related studies conducted by the COGENT and RIKEN groups allowed for the examination of effect homogeneity for genome-wide significant associations across populations of diverse ancestral backgrounds

    Publisher Correction: Sex-dimorphic genetic effects and novel loci for fasting glucose and insulin variability.

    Get PDF
    Correction to: Nature Communications https://doi.org/10.1038/s41467-020-19366-9, published online 5 January 2021. The original version of this Article contained an error in Fig. 2, in which panels a and b were inadvertently swapped. This has now been corrected in the PDF and HTML versions of the Article
    corecore