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Integrative genomic analyses in adipocytes
implicateDNAmethylation inhumanobesity
and diabetes
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DNA methylation variations are prevalent in human obesity but evidence of a
causative role in disease pathogenesis is limited. Here, we combine
epigenome-wide association and integrative genomics to investigate the
impact of adipocyte DNA methylation variations in human obesity. We dis-
cover extensive DNA methylation changes that are robustly associated with
obesity (N = 190 samples, 691 loci in subcutaneous and 173 loci in visceral
adipocytes, P < 1 × 10-7).We connect obesity-associatedmethylation variations
to transcriptomic changes at >500 target genes, and identify putative
methylation-transcription factor interactions. Through Mendelian Randomi-
sation, we infer causal effects of methylation on obesity and obesity-induced
metabolic disturbances at 59 independent loci. Targeted methylation
sequencing, CRISPR-activation and gene silencing in adipocytes, further
identifies regional methylation variations, underlying regulatory elements and
novel cellular metabolic effects. Our results indicate DNA methylation is an
important determinant of humanobesity and itsmetabolic complications, and
reveal mechanisms through which altered methylation may impact adipocyte
functions.

Obesity is a disease of excess adipose tissue that impairs health1.
Worldwide there are more than 650 million people affected by
obesity2. These individuals are at high risk of developing obesity-
induced inflammatory and metabolic disturbances, and subsequent
type2 diabetes (T2D)3–5. Existing treatments for obesity andT2Dhave
major limitations6, and new therapeutic targets derived from

increased understanding of disease mechanisms are a global health
priority.

DNA methylation, the first layer of epigenetic regulation, is cau-
sally implicated in humanobesity andT2D throughdiverse aetiological
pathways7–9. These pathways include in utero programming of disease
risk, long-term effects of diet and lifestyle, mediation of causal genetic
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variations, age-related susceptibility and even inter/trans-generational
inheritance10–16. However, previous efforts to identify robust causal
associations between DNA methylation and these common harmful
human conditions have been hindered by issues with tissue selection,
cell specificity and assigning causation17–21. Obesity-associated DNA
methylation changes in human blood are primarily a consequence
rather than a cause of disease22,23. Methylation variations in human
metabolic tissues cannot be confidently linked to phenotype due to
cellular and therefore epigenetic heterogeneity18,19. Very few studies
have investigated genome-wide DNAmethylation in clinically relevant
human cell types due to the substantial challenges in collecting and
then isolating cells from human tissues24–26.

Adipocytes are the major cell type in adipose tissues. These spe-
cialist metabolic cells have important roles in local energy storage and
expenditure, whole-body energy and glucose homoeostasis, and
obesity and T2D pathogenesis27,28. Interestingly, adipocytes in distinct
anatomical locations have variable DNA methylation and tran-
scriptomic profiles, molecular functions and impacts on metabolic
health, with visceral adipocytes considered more harmful than sub-
cutaneous adipocytes25,29,30. Recent experimental studies demonstrate
that manipulation of DNA methylation enzymes in adipocytes can
induce or prevent obesity and T2D, through cellular effects on energy
expenditure and insulin sensitivity31,32. These proof-of-principle studies
provide strong rationale for exploratory epigenomic studies in human
adipocytes.

Here, we addressed key limitations of previous human
epigenome-wide association studies (EWAS) in subcutaneous and
visceral adipocytes with the aim of identifying novel epigenetic
mechanisms underlying obesity or its adverse metabolic con-
sequences. We used an integrated genomic strategy to: (i) identify
robust alterations in human adipocyte DNA methylation associated
with extremeobesity; (ii) predict the potential effector transcripts (cis-
target genes) of these DNA methylation changes; and (iii) infer
mechanisms underlying these DNA methylation-gene expression
relationships. At a subset of methylation sites and target genes, we
used genetic association, targeted methylation sequencing, and adi-
pocyte genetic and epigenomic manipulation to provide com-
plementary evidence of causation. Our results highlight the
importance of studying cell type-specific epigenomic variations and
the power of extreme trait sampling. We provide mechanistic insights
into the role of DNA methylation in human obesity and T2D, and
deliver novel targets for detailed functional characterisation and
potential clinical translation.

Results
Genome-wide alterations in adipocyte DNA methylation in
people with extreme obesity
To identify obesity-associated alterations in human adipocyte DNA
methylation (5-methylcytosine, 5mC) we collected subcutaneous and
visceral adipose tissue samples intraoperatively from people with
extreme obesity and healthy controls, and isolated populations of
adipocytes from these tissues. We then characterised genome-wide
DNAmethylation in 190 subcutaneous and visceral adipocyte samples
from obese cases and controls in separate discovery and replication
cohorts (Illumina HumanMethylation450 and EPIC Beadchips, Sup-
plementary Fig. 1). The mean difference in body mass index (BMI)
between obese cases and controls fromboth discovery and replication
cohorts was large (~20 kg/m2) (Supplementary Data. 1; age (±3.5-yrs),
sex and ethnicity matched).

In subcutaneous adipocytes, we discovered 4485 5mC sites
associated with extreme obesity at a false discovery rate (FDR) of
<1%33,34. We then replicated the association of 5mC with obesity at 905
of these sites in an independent subcutaneous adipocyte sample (at
FDR < 1% in the replication sample, and at epigenome-wide significance
P < 1 × 10–7 in the combined discovery and replication samples, Fig. 1a).

For subsequent genomic and functional analyses, we annotated the
sentinel 5mC site at each replicated genomic locus (691 subcutaneous
sentinels, lowest combined discovery and replication P value, ≥5-kb
apart which is equivalent to reported CG island (CGI) widths, Supple-
mentary Data. 2). Subcutaneous adipocyte sentinels had a median of
5.8% (range 1.1–17.9%) difference in methylation between obese cases
and controls, and were systematically hypomethylated in obese cases
(binomial sign test P < 6.4 × 10–33, Fig. 1b, consistent with previous
reports35). More sentinels had intermediate (20–80%) than low (<20%)
or high (>80%)methylation levels (Fig. 1b). 24 loci had ≥5 differentially
methylated 5mC sites immediately flanking and within ±5-kb of the
sentinel 5mC site (consistent association direction, P < 0.05, Bonfer-
roni adjusted), indicating extended regions of differential methylation
(Supplementary Data. 2). The largest differentially methylated regions
were found at the RUNX3 (19 sites, 1174-bp), TBX5 (17 sites, 3187-bp)
and ISLR2 (14 sites, 4050-bp) loci. Overall, 4363 of the 4485 5mC sites
(97%) identified at FDR < 1% in the discovery sample showed direc-
tional consistency for association with extreme obesity in the repli-
cation sample (binomial sign test P < 1 × 10-300), suggesting our
findings represent only the strongest signals among a larger number of
obesity-associated DNA methylation changes in subcutaneous
adipocytes.

In visceral adipocytes, we identified 445 5mC sites associatedwith
obesity at FDR < 1%, markedly fewer sites than in subcutaneous adi-
pocytes. 220 of these 5mC sites replicated in an independent visceral
adipocyte sample (replication FDR < 1%, combined discovery and
replication P < 1 × 10–7, Fig. 1a). The 173 sentinel sites (visceral sentinels,
lowest P value, ≥5-kb apart) hadmedianmethylation difference of 7.9%
(range 2.9%-21.5%) between obese cases and controls (Fig. 1b, Sup-
plementary Data 3). Visceral adipocyte sentinels were also pre-
ferentially hypomethylated in obesity (P = 3.8 × 10–7), and most
sentinels had intermediate (20–80%)methylation levels (Fig. 1b). 2 loci
showed extended regions of differential methylation (≥5 significantly
differentially methylated 5mC sites within ±5-kb of the sentinel site,
Supplementary Data 3); at NFIA (5 sites, 2081-bp) and near ATG5
(5 sites, 831-bp). Again, overall directions of effect in visceral adipo-
cytes were highly concordant between the discovery and replication
samples (440 of 445 5mC sites (99%), P < 2 × 10–123).

Disease-associated alterations in DNA methylation are frequently
the result of underlying differences in genetic polymorphisms or cel-
lular (and therefore epigenetic) heterogeneity between individuals18,19.
In sensitivity analyses, we found that the majority of sentinels
remained associated with obesity after correction for genetic effects
(Fig. 1c, Supplementary Fig. 2). Consistent with this, <1% of sentinels
showedmethylation distributions fittingwith underlying SNP effects36,
indicating that the identified methylation differences are pre-
dominantly environmentally driven. Similarly, we found that potential
cellular heterogeneity (arising from impurity) and other unmeasured
confounding exposures did not systematically alter our findings
(Fig. 1c, Supplementary Fig. 3 and 4).

As adipose tissues from different depots have varying impacts
on metabolic health29, we examined whether 5mC changes asso-
ciated with obesity were specific to subcutaneous or visceral adipo-
cytes. Only 23 subcutaneous adipocyte sentinels were robustly
associated with obesity in visceral adipocytes, while a further 11
visceral sentinels replicated in subcutaneous adipocytes (consistent
direction and P < 0.05, Bonferroni corrected for the number of sen-
tinels, Fig. 1d, Supplementary Data 4). Similarly, we found only weak
concordance whenwe compared overall directions of effect between
subcutaneous and visceral adipocyte sentinels (374 of 671,
P = 0.003 subcutaneous in visceral, and 105 of 173 P = 0.006 visceral
in subcutaneous).We verified this depot specificity by demonstrating
greater enrichment of subcutaneous (80% consistent direction and
FDR < 0.01, P < 1.0 × 10–300) than visceral sentinels (21% consistent
direction and FDR < 0.01, P = 9.3×10–18) in association with BMI
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among 538 whole subcutaneous adipose tissue samples37 (Supple-
mentary Data 5).

Together, these genome-wide discovery and replication analyses
quantify extensive alterations in DNA methylation in adipocytes from
people with extreme obesity. Surprisingly, the majority of extreme
obesity-associated 5mCchanges are adipose depot specific, raising the
possibility of tissue intrinsic biological origins and functions.

Enrichment of extreme obesity-associated 5mC sites in active
genomic regions
The genomic location of DNA methylation influences its gene reg-
ulatory potential and its mechanism of action9,38,39. To identify 5mC
sites with active gene regulatory potential and evaluate underlying
mechanisms, we mapped obesity-associated subcutaneous and visc-
eral adipocyte sentinels to the human reference genome, human CpG

island (CGI) annotations, and human adipose/adipocyte functional
genomic annotations.

Differentially methylated subcutaneous adipocyte sentinels were
significantly enriched in adipose tissue and adipocyte enhancers
(Roadmap chromatin states, Reg2Map, FANTOM540–42) and enhancers
predicted from multifaceted datasets (GeneHancer43, Fig. 1e, Supple-
mentary Fig. 5). Enrichment in enhancers was explained by both hypo-
(lower methylation in obese adipocytes) and hyper- (higher methyla-
tion in obese adipocytes) methylated subcutaneous sentinels. Hypo-
methylated sentinels were also (weakly) enriched in regions flanking
active transcription start sites (TSS), bivalent enhancers and polycomb
repressed regions, whereas hyper-methylated sentinels were generally
underrepresented in these regions. In contrast, hyper-methylated
sentinels were enriched and hypo-methylated sentinels were dimin-
ished in actively transcribed genic regions. In addition, subcutaneous

Fig. 1 | DNA methylation sites associated with extreme human obesity in sub-
cutaneous and visceral adipocytes. a Genome-wide associations between 5mC
and extreme obesity in subcutaneous and visceral adipocytes (N = 401,595 sites);
-log10 pvalue in combined discovery and replication samples ordered by auto-
somal chromosome; threshold line epigenome-wide significance (EWS, P < 1 × 10–7).
b 5mCdifferences between obese cases and controls relative tomean 5mC levels at
N = 691 subcutaneous and N = 173 visceral sentinel methylation sites (%-methyla-
tion). c Comparisons of association models without and with adjustment for
potential confounding variables to evaluate the effects of genetic variations and
potential contaminating cell genes on 5mC-obesity relationships. Top panels:
adjustment for cis-SNPs associated with each sentinel 5mC site (FDR <0.01); effect
size (beta) and -log10 pvalue in the combined discovery and replication cohorts;

solid threshold EWS; dashed threshold Bonferroni corrected pvalue (0.05/N sen-
tinels); G genetic effects; E non-genetic effects. Bottom panels: adjustment for
principal components (PC1-5) derived from expression of 12 potential con-
taminating cell genes; effect size (beta) and -log10 pvalue in the replication cohort.
d Cross tissue effects. Methylation-obesity association pvalue in subcutaneous and
visceral adipocytes (combined discovery and replication samples); solid threshold
EWS;dashed thresholdBonferroni correctedpvalue (0.05/Nsentinels). All genome-
wide association analyses were carried out separately in the discovery and repli-
cation cohorts using linear regression, and combined by inverse variance weighted
meta-analysis. e Genomic annotation of obesity-associated DNA methylation sites.
Numberedby fold change (observed compared tomeanexpected) and colouredby
enrichment (red) or depletion (blue) -log10 pvalue (Fishers Exact Test, two-sided).
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sentinels were under-represented at promoter CGIs but not at intra- or
inter-genic CGIs (Fig. 1e, Supplementary Fig. 5). Differentially methy-
lated visceral adipocyte sentinels showed similar trends in CGIs and
multifaceted enhancer datasets but were not significantly enriched in
these, or in adipose tissue/adipocyte chromatin states (which notably
are derived from the subcutaneous adipose depot, Supplementary
Fig. 5). Our findings are consistent with previous studies localising
variably methylated regions to cis-regulatory regions involved in
transcriptional control and phenotypic variation44–47, rather than CG
dense DNA sequences in the promoters of core housekeeping genes.

We also examinedwhether the genomic regions flanking our 5mC
sentinels contained DNA sequence variants associated with human
obesity phenotypes in genome-wide association studies (GWAS).
Although we found no evidence of enrichment, 11 loci contained
genetic variants associated with obesity (BMI48), 8 with central adip-
osity (waist-hip-ratio adjusted for BMI, WHR49) and 4 with T2D50, at
genome-wide significance (P < 5 × 10–8, Supplementary Data 6); these
loci included the BMI and adiposity locus NRXN351,52, the WHR locus
TBX1553,54 and the T2D locus TCF7L255. Thismay reflect limited power to
detect small genetic effects on phenotype mediated by DNA methy-
lation. However, recent studies suggest modest overlap between
EWAS and GWAS signals56, supporting the conclusion that most of the
identified obesity-associated methylation changes in human adipo-
cytes are environmentally rather than genetically determined.

Predicted target genes of extreme obesity-associated 5mC sites
To identify genes that might be responsible for the effects of DNA
methylation on phenotype (target effector genes), we carried out RNA
sequencing inobese and control subcutaneous andvisceral adipocytes
with paired DNA methylation results (replication cohort,
N = 89 samples). We split our 5mC sentinels into those in gene pro-
moters, 5/3ʹUTRs and exons (N = 389 subcutaneous and N = 92 visceral
sentinels) with unambiguous target genes, and those in intronic and
distal intergenic regions (N = 302 subcutaneous and N = 81 visceral
sentinels) without defined target genes.

At promoters, 5/3ʹUTRs and exons, we examined the relationship
between change in methylation at the 5mC sentinel site and change in
expression of the overlapping/directly flanking cis-genes (mixed-
effects model linear regression, combined subcutaneous and visceral
adipocyte samples). Methylation at 121 subcutaneous adipocyte sen-
tinels was robustly associated with expression of 126 unique cis-genes
at FDR <0.01 (P range 9.1×10-3 to 1.9×10-24, Fig. 2a, d, Supplementary
Data 7). In addition, methylation at 29 visceral adipocyte sentinels was
associated with expression of 32 unique cis-genes at FDR <0.01 (P
range 4.6 × 10–3 to 1.6 × 10–12, Fig. 2d, Supplementary Data 8). As
expected, methylation changes at promoters, 5/3ʹUTRs and exons had
predominantly negative effects on gene transcription (Binomial test
P =0.004, Fig. 2e). Subcutaneous sentinels associated with gene
transcriptional changes were enriched in the genomic regions flanking
active TSS rather than at active TSS (2.4-fold, Fisher’s exact P = 0.0005
in adipocytes and 2.4-fold, P = 7.4 × 10–5 in adipose, Fig. 2e, Supple-
mentary Fig. 6).

At intergenic and intronic sites, we used human adipocyte chro-
mosomal interaction maps (promoter capture Hi-C57) and enhancer-
promoter inference datasets (GeneHancer43) to functionally assign
5mC sentinels to specific distal target genes, then tested sentinel 5mC
sites for association with target gene expression. 84 subcutaneous and
14 visceral sentinels were associated with 135 and 16 unique distal
target genes, respectively, at FDR <0.01 (P range 1.1 × 10–2 to 8.6 × 10–18,
Fig. 2b, d, Supplementary Data 9 and 10). For intergenic and intronic
sentinels not assigned to target genes through direct functional
interactions (N = 161 in subcutaneous and N = 56 in visceral) we loca-
lised the 5mC site to a human adipocyte topologically associated gene
regulatory domain (TAD58) and defined all genes within the domain as
potential targets (median 7 range 1-46 target genes per sentinel).

91 subcutaneous sentinels were associated with 177 cis-genes and 21
visceral sentinels with 34 cis-genes in the same TAD at FDR <0.01 (P
range 2.7 × 10–3 to 3.5 × 10–20, Fig. 2c, d, Supplementary Data 11 and 12).
Most associations occurred in unique TADs, although 8 TADs had
≥5 sentinelmethylation-target gene associations (Fig. 2d). As expected,
sentinels associated with functionally assigned target genes were
enriched in enhancers (subcutaneous 1.8-fold P = 8.4 × 10–4 in adipo-
cytes and 1.5-fold P =0.03 in adipose; visceral 3.1-fold P =0.05 in adi-
pocytes and 3.3-fold P = 0.01 in adipose, Fig. 2e and Supplementary
Fig. 6). By contrast, sentinels associated with genes in a shared TAD
were enriched in polycomb repressed regions (subcutaneous 1.5-fold
P =0.007 in adipocytes, 1.8-fold P =0.0002 in adipose, Fig. 2e), sug-
gesting that genomic context-specific regulatorymechanisms underlie
the observed methylation-expression associations.

As the observed methylation differences between obese and
control adipocytes were modest (median 5.8% at subcutaneous and
7.9% at visceral sentinels), we examined whether the identified target
genes were systematically differentially expressed in adipocytes from
their respective depot in association with obesity. In subcutaneous
adipocytes, 34% of the target genes were differentially expressed at
FDR <0.01 (background 6%, binomial test P = 7 × 10–75, Supplementary
Data 13). In visceral adipocytes, 32% of the target genes were differ-
entially expressed (background 9%, binomial test P = 6 × 10–37, Sup-
plementary Data 13).We then verified these findings in an independent
human cohort comprising whole subcutaneous and visceral adipose
tissues (GTEx Consortium). Despite the confounding effects of cellular
heterogeneity in whole tissues59, the identified target genes showed
consistent depot specific enrichment in association with BMI (Sup-
plementary Data 13). We also examined whether altered expression of
DNA methylating or demethylating enzymes might underlie the sys-
tematic hypomethylation observed in obese subcutaneous and visc-
eral adipocytes, but found no evidence to support this explanation.

Many of the genes associated with altered DNA methylation in
adipocytes have important roles in insulin signalling/sensitivity, adi-
pogenesis, fatty acid metabolism and adipocytokine signalling (Sup-
plementary Data 7 to 12). As examples, the IRS2, ADIPOR2, PLIN5,
FABP3, SOCS3, RBP4 and AKT3 genes in subcutaneous adipocytes60–66,
and theKLF6,TULP3, DOC2B,ACOT11, PRKD2, SLC22A3 andKIF5C genes
in visceral adipocytes67–73. Interestingly, several methylation-
expression associations involved genes that control neurite forma-
tion, axonal guidance and synaptic plasticity (NRN1, SEMA6B, SEMA4B
and NRXN374–76), raising the possibility of epigenetic effects on neural
inputs to expanding adipose tissue. Subcutaneous sentinels were
associated with important genes involved in browning/beigeing of
white adipocytes including the master regulator transcription factors
PRDM16 and EBF277,78, and the signalling molecules FGF9 and
IL10RA79,80. The directions of effect of methylation on expression of
EBF2, FGF9 and IL10RA were all consistent with reduced browning in
obese subcutaneous adipocytes. Whereas, at the PRDM16 locus,
methylation at different genomic positions was positively and nega-
tively associated with PRDM16 expression, suggesting complex
methylation-expression relationships. We also discovered a novel
association between expression of a cluster of micro-RNAs implicated
in adipogenesis, MIR23A, MIR24-2 and MIR27A81–86, and methylation of
its shared promoter in subcutaneous adipocytes. Nonetheless, most
potential effector genes of obesity-associated 5mC changes have
unknown functions in adipocytes.

Functional annotation of target genes linked to extreme
obesity-associated 5mC changes
We used gene set enrichment analyses to systematically evaluate the
molecular and functional significance of cis-genes linked to our 5mC
sentinels either bygenomic location (nearest cis-gene) or by association
(methylation-expression FDR<0.01). The nearest cis-genes to sub-
cutaneous sentinel 5mC sites were enriched in growth and
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development, inflammatory, metabolic and apoptosis pathways
(FDR<0.01 Empirical, Fig. 2f, Supplementary Data 14). Notable path-
ways included TLR4 signalling, a key trigger of the obesity-induced
inflammatory response87, sphingolipid binding which is implicated in
cell stress and metabolic dysfunction88, and Vitamin D metabolism
which is linked to adipogenesis, lipid storage and adipocytokine
production89. The genes nearest to visceral sentinels were over-
represented in endoderm development, body pattern formation and
cell motility pathways (FDR<0.01 Empirical, Fig. 2f, Supplementary
Data 14). Cis-genes associated with change in methylation at sub-
cutaneous sentinels were enriched in a cluster of intersecting gene sets
involved in transcriptional control and cell/tissue development (FDR<
0.01 Hypergeometric, gProfiler90). Relevant sub-clusters included cell
differentiation and muscle development gene sets (Supplementary
Fig. 7 and Supplementary Data 15). Similarly, cis-genes associated with
visceral sentinels were enriched in intersecting embryonic and tissue
development gene sets, and in transmembrane drug transporter genes
(FDR<0.01 Hypergeometric, gProfiler, Supplementary Fig. 7 and

Supplementary Data 15). Taken together, these pathway analyses link
obesity-associated 5mC sites in subcutaneous and visceral adipocytes
to genes involved in cell lineage and fate determination, tissue devel-
opment and remodelling, inflammation, and metabolic function/dys-
function, canonical functions of genomic enhancers91,92.

Evidence of mechanistic interactions between transcription
factors and extreme obesity-associated 5mC sites
Recent studies suggest that DNA methylation in enhancers and other
active cis-regulatory regions may systematically regulate gene tran-
scription by altering the binding ofmethylation-sensitive transcription
factors (TFs93–95). Alternatively, TF binding can alter the methylation
status of flanking DNA in these regions94,95. To investigate putative
mechanistic interactions between obesity-associated 5mC changes
and TFs, we mapped human TF binding motifs within ±150-bp of each
sentinel 5mC site using the Homer database (de novo)96. We then
identified the TFs with the strongest potential to bind to each motif,
and examined the relationship between expression of these TFs,

Fig. 2 | DNA methylation-target gene associations in human adipocytes. a–c
Locus plots of sentinel 5mC sites (diamond) and their predicted target effector
genes (dark grey). a Methylation at cg01558212 in the SATB2 promoter was asso-
ciatedwith SATB2 and SATB2-AS1 gene transcription (subcutaneous).bMethylation
at two sites, cg11307296 and cg13390388, within distinct functional loops in human
adipocyte promoter capture HiC connectivity maps, was associated with tran-
scription of the adipocyte browning/beigeing gene EBF2 (subcutaneous).
c Methylation at cg03779326 was associated with transcription of RPN1 but not
other putative target genes within a shared human adipocyte TAD (visceral). Pre-
sented as%-difference inmethylation between obese cases and controls, annotated
by UCSC CpG island (CGI) and Roadmap adipose (E063) and adipocyte (E025)
chromatin states. d Frequency of sentinel methylation-expression associations at
FDR <0.01 according to target gene assignment method. Genic: sentinel in pro-
moter, 5/3ʹUTR or exon. Functional: intronic/intergenic sentinel sharing functional
interaction with distal target gene. TAD: intronic/intergenic sentinel and distal
targetgene(s)within sharedhumanadipocyte topologically associateddomain.Adi
C-HiC: humanadipocyte promoter captureHi-C interaction.OtherC-HiC: promoter

capture Hi-C interaction in another human tissue. eRNA coexprN: co-expression of
distal eRNA and proximal promoter RNA. eQTLs: Association of distal SNP with
proximal promoter expression. TF coexprN: TF binding in distal site (ChIP-seq) and
TF-target gene co-expression. 1 to >5 assocN: Number of sentinel-target gene
associations in shared TAD. e Subcutaneous sentinel-target gene associations at
FDR <0.01 grouped by target gene annotation method, coloured by adipocyte
chromatin state (Roadmap E025). Left panel: distance to TSS and -log10 pvalue
according to direction of effect, and sentinel density distribution. Right panel:
frequencies of observed associations compared to the null background (sentinel-
gene associations at FDR >0.01). Fold change: log2 fold change in gene expression
for each unit change inmethylation. f Enriched pathways and genesets at P <0.001
(Empirical, one-sided) based on the nearest cis−gene to each 5mC sentinel in
subcutaneous and visceral adipocytes. Bar represents fold change of observed
compared to mean expected frequency, number is the observed gene counts, in
each pathway/geneset. All methylation-expression analyses were carried out using
mixed-effects linear regression in combined adipocyte samples.
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change in sentinel methylation and change in sentinel target gene
transcription in adipocytes.

The genomic regions flanking the 671 subcutaneous sentinels
were enriched for 7 distinct TF binding motifs (P range 1 × 10–9 to
1 × 10–13); 5 motifs at hypo- (lower in obesity) and 2 motifs at hyper-
methylated (higher in obesity) sentinels (median 28 range 16-86 sen-
tinels per motif, Fig. 3a, Supplementary Data 16). Motif 1 was pre-
ferentially located at tissue-specific enhancers, Motif 4 at regions

flanking active TSS, and Motif 5 at both enhancers and active TSS
flanking regions (Fig. 3b, Supplementary Fig. 8). Overall, 49 TFs with
potential to bind at these 7 motifs were expressed in human sub-
cutaneous adipocytes (median 8 range 4–11 TFs per motif, Supple-
mentary Data 17). In visceral adipocytes, we identified several putative
motifs at obesity-associated 5mC sites (Supplementary Data 18) but
none reached the stringent significance threshold required for robust
de novo motif discovery.

Fig. 3 | Interactions between DNA methylation and transcription factors in
human subcutaneous adipocytes. a Enrichment of extreme obesity-associated
DNA methylation sentinels in 7 transcription factor binding motifs (subcutaneous
sentinels). Left panel: the predictedDNA sequence corresponding to each enriched
motif, based on observed nucleotide frequencies (Homer). Motifs 2 and 4 both
contained CG sites within their predicted DNA binding sequence. Centre panel:
heatmap of -log10 pvalue for enrichment of: i. hypo- (lower in obesity); and ii.
hyper-methylated subcutaneous sentinels (relative to permuted background,
hypergeometric test, one-sided). Right panel: bar plot of the number of sub-
cutaneous sentinels mapping to each motif. b Human adipocyte Roadmap chro-
matin state annotation of Motifs 1, 4 and 5; bar plots of observed over expected
ratio in selected roadmap states, coloured by observed counts (number of sentinel-
motif pairs). Motif 1 was over-represented in enhancers, Motif 4 in active TSS, and
Motif 5 in enhancers and active TSS. c Density/ridge plots of pairwise correlation
betweenTF expression andmethylation level at each of its corresponding sentinels

in subcutaneous adipocytes, split by Motif and ranked by mean correlation.
dDistribution of genomicCG sites in the ±150-bp regions flankingMotifs 1, 2 and 4,
centredon themotif (coloured inorange).GenomicCG siteswere enriched atMotif
4 (peak), and depleted atMotif 1 (trough), relative to the flankingDNA sequences. A
peak of genomic CGs was also observed immediately upstream of Motif 2 though
other genomic CG peaks were present in its flanking DNA sequences.
e Relationships between expression of 4 TFs predicted to bind at Motif 4 (ELK1,
ELK3, ELF1, ELF4) and expression of the assigned target genes of each methylation
sentinel corresponding to Motif 4. Presented as association beta without (Effect)
and with (Effect + Sentinel) adjustment for sentinel DNA methylation level (com-
bined adipocyte samples), with regression line and 95% confidence intervals.
Adjustment for sentinel DNA methylation levels systematically influenced the
associations between the ELK1, ELK3 and ELF4 TFs and their target genes, but not
the ELF1 TF.
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Consistent with evidence that TF binding activity can alter DNA
methylation levels, we found correlation between TF expression and
sentinel methylation levels at each motif (Fig. 3c). The strongest cor-
relations involved the HOXA11 and HOXA13 TFs (Motif 7, Fig. 3c), with
weaker correlations between the ATF3, FOSL1 and JUN (Motif 1), SNAI1
(Motif 2), KLF3, KLF4 and KLF5 (Motif 3), ELF1 and ELK1 (Motif 4),
RUNX1, RUNX3 and SPI1 (Motif 5), and SOX4, SOX6 and SOX10 (Motif 6)
TFs and subsets of their sentinels (Fig. 3c).Motifs 2 and 4 containedCG
sites within their binding sites, raising the possibility that the presence
of DNA methylation might directly alter TF binding affinity at loci
linked to these motifs (Fig. 3a, Supplementary Data 16). To evaluate
this further, we examined whether these motifs were enriched for
differentially methylated sites (sentinel and flanking sites) associated
with obesity. No enrichment was observed but array coverage of
potential CG sites was sparse (median 22% IQR 14-33% of genomic CG
sites within ±150bp of a Motif, Supplementary Fig. 8). As DNA
methylation levels at adjacent CG sites are correlated97, we examined
motifs for enrichment of genomic CG sites not covered in our dataset
at which 5mC could impact TF-DNA binding. Motif 4 was strongly
enriched for genomic CG sites relative to the flanking DNA sequences
(±150-bp, Fig. 3d). A cluster of genomic CGs was also present imme-
diately upstream of Motif 2, though other genomic CG clusters were
observed in the DNA sequences flanking Motif 2. We therefore exam-
ined whether sentinel methylation levels at Motifs 2 and 4 influenced
co-expression between TFs and their predicted target genes (the pre-
dicted target genes of each sentinel site corresponding to that TF-
Motif pair). At both motifs, levels of methylation impacted TF-target
gene relationships, suggesting potential mediation of transcriptional
regulation by methylation (Fig. 3e, Supplementary Fig. 8). The largest
effects of methylation on TF-target gene relationships were observed
at the ELK1, ELK3 and ELF4 TFs (Fig. 3e), of which ELK1 and ELF4 have
been shown to be methylation-sensitive in vitro98,99. Importantly, the
TFs implicated in these reciprocal relationships with DNAmethylation
are widely involved in adipocyte biology, adiposity and metabolic
dysfunction (Supplementary Data 1754,67,100–109).

Genetic association analyses to infer disease causation
To distinguish individual 5mC sites with potential causal effects on
obesity or obesity-inducedmetabolic disturbances, we carried out two
sample Mendelian Randomisation analyses (MR). We used whole adi-
pose tissue (N = 588 samples, Twins UK110–113) rather than isolated adi-
pocytes to increase power to identify independent cis-SNPs (pairwise
linkage disequilibrium (LD) R2 < 0.01) associated with each sentinel
5mC site (within +/500-kb) and selected a significance threshold of
0.05 (Bonferroni corrected) to reduce weak instrument bias. We then
used the identified cis-SNPs as instrumental variables (IV) to infer
causal effects of DNA methylation on obesity, central adiposity, T2D,
glycaemic traits linked to T2D, and lipid traits, among large-scale
human GWAS (Fig. 4a48–50,114,115).

Only 191 subcutaneous and 34 visceral sentinels had significantly
associated cis-SNPs, meaning we were unable to assess causation at a
large fraction of sites. Nevertheless, we found genetic evidence to
support causal effects of 5mC on obesity (measured using BMI) at 10
loci in subcutaneous adipocytes and 4 loci in visceral adipocytes (MR
single instrument Wald Ratio or multiple instrument IVW random
effects FDR <0.01, and Steiger directionality test FDR <0.01, Fig. 4b,
Supplementary Data 19116,117).We also identified potential causal effects
of DNAmethylation on central adiposity at 12 loci (10 subcutaneous, 2
visceral, measured using WHR), T2D at 4 loci (3 subcutaneous, 1 visc-
eral), and fasting glucose, insulin andHbA1c at 3 loci (all subcutaneous,
Fig. 4b, Supplementary Data 19). Methylation at 3 loci was causally
linked to multiple obesity phenotypes: cg26906217 (BMI and WHR;
near the PIK3C2A gene); cg15809217 (WHR, T2D and fasting insulin (FI);
associated with PRRC2A expression in subcutaneous adipocytes); and
cg05941027 (BMI, WHR and T2D; associated with LIMD2 expression in
visceral adipocytes). Another notable locus was the 5mC site
cg21681030, causally associated with BMI through MR, and respec-
tively associated with expression of RHOQ, a glucose receptor traf-
ficking gene118,119, in our human adipocyte samples. For blood lipids
traits, we identified potential causal associations between DNA
methylation and HDL cholesterol at 15 loci (14 subcutaneous, 1
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cg10653607 (1 snp, WR)
cg23104954 (1 snp, WR)
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Fig. 4 | Causal inference analyses. a Mendelian Randomisation analysis using
genetic variants as instrumental variables to evaluate cause-consequence rela-
tionships between DNA methylation sentinels and human obesity phenotypes.
Required evidence: robust association between: i. the instrumental genetic variant
and the methylation exposure; and ii. the instrumental genetic variant and the
outcome phenotype. Assumptions: i. the instrument only influences the outcome
through the exposure not through any other pathway (horizontal pleiotropy); and
ii. the instrument is not associated with confounders. b Forest plots of the effect
sizes of subcutaneous and visceral adipocyte sentinels causally associated with
human obesity phenotypes through two sample MR in adipocytes (FDR <0.01 in

both MR causal and Steiger directionality tests). Centre values mark effect size
estimates (MR beta) and error bars show the 95% confidence intervals. Sentinels
causally associated with both adiposity and its metabolic consequences are anno-
tated (connected lines). MR causal tests: Wald Ratio for single SNP IV (WR); Inverse
Variance Weighted for >1 SNP IV (IVW). BMI: body mass index as a measure of
obesity (GIANT, N ≤ 795,640). WHRadjBMI: Waist-hip ratio adjusted for BMI as a
measure of central adiposity (GIANT, N ≤ 694,649). T2D and T2D adjusted for BMI
as measures of T2D risk (DIAGRAM, N ≤ 231,422). Fasting glucose and insulin
(MAGIC, N ≤ 138,589) and HbA1c (MAGIC, N ≤ 159,940) as measures of glycaemic
traits linked to T2D.
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visceral), LDL cholesterol at 11 loci (10 subcutaneous, 1 visceral), tri-
glycerides at 3 loci (2 subcutaneous, 1 visceral), andmultiple lipid types
at 8 loci (all subcutaneous, Supplementary Fig. 9, Supplementary
Data 19). 6 of the 37 lipid lociwere also causally implicated throughMR
in adiposity or its metabolic consequences (Supplementary Fig. 9).

As our MR analyses were predominantly based on single SNPs as
IVs, we repeated them using a larger number of correlated cis-SNPs
(pairwise r2 < 0.8, SNP-methylation P < 0.05, Bonferroni corrected) as
IVs to evaluate for horizontal pleiotropy (Fig. 4a). 44 loci had at least 3
correlated IV SNPs enabling sensitivity testing at these loci. 30 loci
replicated using MR IVW regression and 10 replicated using the less
powerful MR Egger regression (P <0.05, Supplementary Data 19).
Multiple loci showed evidence of heterogeneity between IVs, but only
11 loci violated the MR assumption of no horizontal pleiotropy (MR
Egger intersect P <0.05, Supplementary Data 19). We then evaluated
the relevancy of our MR findings to adipocytes by replication testing
the SNP-5mC associations identified in whole adipose tissue in sub-
cutaneous and visceral adipocytes. Despite the small sample size, 21 of
61 cis-SNPs replicated in adipocytes at P <0.05 (Binomial Test
P = 8.2×10–13) and 50 of 61 cis-SNPs had consistent directions of effect
(Binomial Test P = 4.6 × 10–7, Supplementary Data 20). Thus, through
genetic association, we infer causal effects of adipocyte DNA methy-
lation on obesity or obesity-induced metabolic disturbances at up to
28 independent genomic loci, and on lipid traits at up to 31 further
genomic loci.

Adipocyte functional studies and methylation fine-mapping
Finally, we selected two target genes of 5mC sites implicated in disease
pathogenesis throughMR, butwithout knownmetabolic functions, for
functional screening in adipocytes. We focused on the PRRC2A gene
which was linked to central adiposity, insulin resistance and T2D, and
the LIMD2 genewhichwas linked to obesity, central adiposity and T2D.

We evaluated the effect of silencing each target gene on a cellular
model of adipogenesis, because adipogenesis has an important role in
adipose tissue expansion and insulin sensitivity. We found that
knockdown of both genes significantly reduced lipid accumulation
during adipocyte differentiation, with a more marked effect observed
after Prrc2a than Limd2 knockdown (Fig. 5a, b, Supplementary Fig. 10).
As adipocyte differentiation models are prone to variability, we inde-
pendently replicated our lipid accumulation studies, observing con-
cordant results (Supplementary Fig. 10). We also examined the effects
of Prrc2a and Limd2 gene silencing on key adipogenesis, lipid meta-
bolism and insulin signalling genes. Prrc2a knockdown led to a con-
sistent reduction in expression of Pparg, the master regulator
adipogenic transcription factor, and concordant reductions in lipid
metabolism and insulin signalling genes that are regulated by Pparg
(Fig. 5c, Supplementary Fig. 10). In contrast, Limd2 gene silencing did
not alter Pparg expression (Fig. 5c, Supplementary Fig. 10). Instead,
Limd2 silencing led to alterations in fat mobilising and lipid synthesis
genes, though findings were inconsistent across replicates (Fig. 5c,
Supplementary Fig. 10). We repeated our gene silencing studies using
two distinct siRNAs for each gene, targeting different sites on the
mRNA, which verified that our findings were not due to off target
effects or altered cell viability (Supplementary Fig. 11).

In parallel, we used targeted methylation sequencing to fine map
obesity-associated DNAmethylation changes in the regulatory regions
flanking the sentinel sites at PRRC2A, LIMD2 and 69 additional loci
(N = 43 subcutaneous and N = 46 visceral adipocyte samples, Supple-
mentary Data 21). Although targeted methylation sequencing lacked
the precision of methylation arrays or whole-genome bisulphite
sequencing120 (Supplementary Fig. 12), we found that methylation
sentinels were enriched for association with obesity in targeted
sequencing results, and effect sizes were highly concordant with array
results (Supplementary Fig. 12).We therefore selected a > 5% change at
P <0.05 as evidence of differential methylation at sites tagged by

robust sentinel associations. At the PRRC2A locus, we identified mul-
tiple differentially methylated sites adjacent to the sentinel at an open
chromatin region121, annotated as an intronic enhancer,with functional
connectivity to the PRRC2A gene58 (Fig. 5D, Supplementary Fig. 13,
SupplementaryData 22). Here, expression of 2 TFs predicted to bind at
themethylation sites (ELK1 and ESSR) correlated strongly with PRRC2A
expression and explained >30% of its variance (Supplementary Fig. 14,
Supplementary Data 23), linking the methylation changes to TF-
mediated control of PRRC2A transcription. The underlying open
chromatin region and enhancer elements were specific to adipocyte
precursors (they were not present in mature adipocytes or whole
adipose tissue) supporting our gene silencing and published findings
implicating PRRC2A in adipogenesis and cell specification122. At the
LIMD2 locus, we revealed an extended region of differential methyla-
tion covering a proximal enhancer and several LIMD2 exons and splice
sites (Fig. 5D, Supplementary Fig. 13, Supplementary Data 22) at which
methylation might impact transcription initiation, elongation or spli-
cing. At other loci with established roles in adipocyte biology and/or
genetic risk, targeted methylation expanded the sentinel associations
to differentiallymethylated regions, the functional units bywhichDNA
methylation controls gene expression and phenotype, suggesting
potential pathogenic effects at these loci (Supplementary Fig. 15,
SupplementaryData 22). At loci linked toMotif 4, we found that theCG
dinucleotide positions within the motif were systematically hypo-
methylated in people with obesity (18 of 24, 75%, P = 0.01, Supple-
mentary Fig. 14) and that the methylation differences at these sites
were concordant with those observed at the adjacent sentinel sites
(R = 0.63, P = 0.001, Supplementary Fig. 14). Thus establishing that the
binding motifs of methylation-sensitive transcription factors are enri-
ched for methylation changes associated with obesity that influence
TF-target gene co-expression relationships (Fig. 3e).

As the sites ofmethylation changes were distal to the PRRC2A and
LIMD2 promoters, we used CRISPR-activation to assess whether the
regulatory elements harbouring obesity-associated methylation
changes were involved in target gene transcription. At both loci, we
targeted differentially methylated open chromatin peaks at/flanking
the sentinel sites using a dual guide-based approach to maximise
potential activation123 (Supplementary Fig. 16). Targeted activation
significantly increased expression of LIMD2 (>2-fold, P <0.0001) but
not its neighbouring genes (Fig. 5e, Supplementary Fig. 17). Targeted
activation did not alter PRRC2A expression or expression of the BAG6
gene which shares the same TAD (Fig. 5e, Supplementary Fig. 17).
These experimental studies confirm unequivocally that the differen-
tially methylated genomic region at LIMD2 regulates LIMD2 transcrip-
tion. They do not however rule out a comparable effect at the PRRC2A
locus where the absence of activation may be due to technical
factors124–126 considering the combinatorial genomic evidence linking
the differentially methylated region to PRRC2A expression.

Overall, our integrative genomic and adipocyte functional studies
are consistent with lower methylation levels at cg15809217 in obese
subcutaneous adipocytes promoting insulin resistance and T2D,
through reduced PRRC2A expression and impaired adipogenesis. They
also suggest that reducedmethylation at cg05941027 in obese visceral
adipocytes may increase LIMD2 expression and thereby increase lipid
storage. PRRC2A was recently reported as a reader of N6-
methyladenosine (m6A), the most abundant internal modification to
mRNA, that stabilises transcripts as they translocate from the nucleus
to ribosomes for protein synthesis and regulates cell specification,
offering a novel mechanism through which its metabolic effects may
be mediated122,127. LIMD2 is a structural protein requiring further
elucidation128.

Discussion
Epigenetic processes are tissue and cell specific which has made
investigating their roles in complex human diseases amajor challenge.
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In this study, we combine integrated functional genomics with
extreme trait sampling in humanadipocytes, from functionally distinct
adipose depots, to elucidate epigenetic mechanisms underlying
human obesity and obesity-induced metabolic disturbances. We dis-
cover and replicate extensive changes in DNA methylation associated
with extreme obesity at epigenome-wide significance. Surprisingly,
these methylation changes are largely adipose depot-specific with
many more obesity-associated 5mC sites occurring in subcutaneous

than visceral adipocytes.We surmise this depot specificity may be due
to the local tissue microenvironment in the absence of technical,
genetic or other known confounding factors.

By integrating our DNA methylation findings with adipocyte-
specific transcriptomic and chromosomal interaction datasets, and
cross-tissue enhancer-promoter catalogues, we statistically and func-
tionally connect extreme obesity-associated 5mC sites to tran-
scriptomic changes at >500 genes. These putative effector genes of

Fig. 5 | Adipocyte genomic and functional studies. aOil RedO (ORO, red/brown)
lipid staining in day 6 differentiated 3T3-L1 adipocytes reverse transfected with
non-silencing (NS), Prrc2a or Limd2 siRNA at day 2 of differentiation. b Equivalent
spectrophotometric measurements of eluted ORO, normalised for cell number
using crystal violet (CV, day 6, N = 4 independent samples, Prrc2a P = 3.5 × 10–5,
Limd2 P =0.0047). Presented as mean ± SEM relative to NS control, compared by
Student’s t test (two-sided). c Expression of adipogenesis, insulin signalling and
lipid metabolism genes at day 6 of differentiation in 3T3-L1 adipocytes transfected
with siRNA against Prrc2a, Limd2 or NS control at day 2 of differentiation (N = 6
independent samples). Real-time qPCR values were normalised to housekeeping
genes (Nono, Ywhaz). Presented asmean± SEM relative toNS control, comparedby
Student’s t test (two-sided). d Targetedmethylation sequencing at the PRRC2A (left
panel, subcutaneous adipocytes, N = 43) and LIMD2 (right panel, visceral adipo-
cytes, N = 46) loci. CGI: UCSC CpG islands. E063 and E025: Roadmap adipose and
adipocyte chromatin states. Sentinel: Sentinel methylation site in combined dis-
covery and replication data. Δ-Array and Δ-TMS: Difference in methylation (range

−10 to 10%) in obesity in combined discovery and replication array data, and tar-
geted methylation sequencing data (red higher, blue lower). %-TMS: Mean
methylation level (0 to 100%) in targetedmethylation sequencing data. ATAC1 and
ATAC2: ATAC sequencing of human undifferentiated preadipocytes and mature
differentiated adipocytes. Hi-C: Human adipocyte Hi-C functional connectivity
maps atday 3ofdifferentiation. eTargeted activation at thePRRC2A locus in human
adipocytes (using two pairs of guides, F1/R2 N = 6 and F2/R3 N = 6 independent
samples) had no effect on PRRC2A expression. Targeted activation at the LIMD2
locus increased LIMD2 expression in two (F1/R2 N = 7 and F1/R3 N = 6 independent
samples) but not a third cell line (F2/R3 N = 6 independent samples). Presented as
mean ± SEM relative to AAVS1 control cells, standardised to housekeeping genes
(ACTB,GAPDH).AAVS1 represents the combined results for the AAVS1 F1/R2 and F1/
R3 guide pairs (N = 13 independent samples, One-Way ANOVA test, two-sided,
Dunnett’s test for multiple comparisons). **P <0.01, ***P <0.001, ****P <0.0001.
Source data are provided in the Source Data file.
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obesity-associated methylation changes cluster in developmental,
metabolic and inflammatory pathways, and encode proteins with key
roles in adipogenesis, browning/beigeing of white adipocytes and
insulin signalling. Of particular interest, we associate lower levels of
DNA methylation in obese subcutaneous adipocytes with increased
expression of a micro-RNA cluster, comprising MIR23A, MIR24-2 and
MIR27A, whosemembers have been shown to inhibit PPARG signalling,
suppress adipogenesis and induce insulin resistance81–86.

Our analyses co-localise extreme obesity-associated 5mC varia-
tions to functionally active genomic regions and transcription factor
binding sites. They further suggest that TF activity may alter methy-
lation status and that methylation status may impact TF activity at
differentially methylated sites associated with obesity. These findings
require experimental validation but are supported by existing evi-
dence of reciprocal relationships between DNA methylation and TFs,
and methylation-sensitivity of the TFs we identify93–95,98. At a cellular
level, many of the TF families linked to obesity-associated DNA
methylation variations – AP1, KLF, SOX and ETS – have established or
emergent roles in adipocyte biology and metabolism67,100–103,108, con-
necting disease-related DNA methylation variations to potential
pathogenic pathways.

Contrary to most previous human obesity EWAS, we causally
implicate up to 26% of extreme obesity-associated 5mC sites in
obesity and obesity-induced metabolic disease susceptibility. Our
MR findings should be regarded as causal estimates of the effects of
methylation on phenotype under genetic control129. They do not
indicate absence of causation at environmentally determined loci,
the majority of our dataset. Targeted methylation sequencing and
CRISPR-activation add to our understanding of regional methylation
patterns and their putative impact on gene expression regulation.
Complementary functional screens of target genes of causative
methylation variations demonstrate novel effects on adipogenesis,
PPARG signalling and adipocyte lipid handling, offering cellular
mechanisms by which DNAmethylationmay promote obesity and its
consequences.

New technologies for profiling DNA methylation and transcrip-
tional regulation at single cell resolution will enable future studies to
address the importance of cellular epigenetic heterogeneity, methy-
lation and transcriptional dynamics, and spatial microenvironmental
interactions, in obese adipose tissue remodelling130,131. Nevertheless,
we show that existing technologies that facilitate the study of epige-
nomic variations in larger numbers of individuals, and thus better
capture human phenotypic diversity, remain a valuable tool for de-
convoluting the epigenetic basis of human obesity and T2D. Com-
bining these high-throughput approaches with precision epigenome
tools132–135 will clarify the impact of DNA methylation, including at the
sites we identify, on disease pathogenesis.

Taken together, our exploratory studies in human adipocytes
begin to reveal genomic mechanisms and molecular signalling path-
ways through which DNAmethylation may impact human obesity and
its metabolic consequences. We provide new evidence of causation at
a sizeable fraction of extreme obesity-associated 5mC sites, and a
resource of epigenomic variations and genes for furthering our
understanding of the human epigenome and its role in obesity and its
metabolic complications.

Methods
Study design
Case-control DNA methylation analyses were carried out in 95 sub-
cutaneous and 95 visceral adipocyte samples from people with
extreme obesity and healthy controls in separate discovery and repli-
cation cohorts (Supplementary Fig. 1). In total, 44 participants in the
discovery cohort and 42 participants in the replication cohort pro-
vided both subcutaneous and visceral adipocyte samples. The
remaining subcutaneous and visceral adipocyte samples came from

distinct individuals. RNA sequencing was carried out in adipocytes
from the replication cohort.

Participant selection and sample processing
Adipose tissue samples were obtained intraoperatively frommorbidly
obese individuals (mean (sd) BMI 44.8 (7.2) kg/m2) undergoing
laparoscopic bariatric surgery and healthy controls (mean (sd) BMI
24.9 (3.3) kg/m2) undergoing non-bariatric laparoscopic abdominal
surgery (Supplementary Data 1). Subcutaneous tissue was collected
from abdominal surgical incision sites and visceral tissue from the
omentum. Participants were unrelated, between 20-70 years of age,
from a multi-ethnic background, and free from systemic illnesses not
related to obesity. Controls and cases were well-matched for age
(within 3.5-yrs), sex and ethnicity (Supplementary Data 1). People with
treated T2D were excluded because of potential effects of hypogly-
caemic medications on adipose tissue metabolism. All participants
gave informed consent. The study was approved by the London—City
Road and Hampstead Research Ethics Committee, United Kingdom
(reference. 13/LO/0477).

Whole tissue samples were processed immediately to isolate
populations of primary adipocytes using established protocols136,137.
Polypropylene plastics were used to minimise adipocyte cell lysis.
Tissues were cut into 1-2-mm3 pieces and washed in Hank’s buffered
salt solution (HBSS), before digestion using type 1 collagenase (1mg/
ml, Worthington) in a water bath at 37 C, shaking at 100-rpm for
~30-min. Digested samples were filtered through a 300-micron nylon
mesh to removedebris, and thefiltered solutionwascentrifuged at low
speed (500-g; 5-min; 4 C). After removal of the oil layer, floating
mature adipocytes were collected by pipette, washed in ~5x volume of
HBSS and recentrifuged. After 3 washes the clean adipocyte cell sus-
pension was collected for snap freezing and storage at −80 C.

Quantification of DNA methylation
Genomic DNA and RNA were extracted in parallel from isolated adi-
pocytes using the Qiagen AllPrep DNA/RNA/miRNA Universal Kit
according to the manufacturer’s protocol for lipid-rich samples.
Genome-wide DNA methylation was assayed using Illumina Infinium
HumanMethylation450 (96 discovery samples) and EPIC (96 replica-
tion samples) beadchips. In both cohorts, all sampleswere randomised
and processed in single batches. 0.2–0.5 µg of genomic DNA was
bisulphite converted using EZ DNA Methylation-Direct Kits (Zymo
Research, Irvine, CA). Bisulfite-treatedDNAwas denatured, neutralised
and subjected to an overnight whole-genome amplification reaction.
Amplified DNA was enzymatically fragmented, precipitated and
resuspended for hybridisation to respective HumanMethylation450K
and EPIC beadchips. After hybridization, beadchips were processed
through a primer-extension protocol, stained, coated and then imaged
using the HiScan System (Illumina).

Raw signal intensities were retrieved using the readIDAT function
of the R package Minfi (version 1.36.0, Bioconductor138), followed by
background correction with the function bgcorrect.illumina from the
same R package. Detection P values were derived using the function
detectionP as the probability of the total signal (methylation + unme-
thylated) being detected above the background signal level, as esti-
mated from negative control probes. Signals with detection P
values ≥0.01 were removed. >99% of CG sites in both cohorts passed
this quality control threshold. One visceral (discovery) and one sub-
cutaneous (replication) sample with less than 95% of CG sites provid-
ing a detected signal were excluded. To reduce non-biological
variability between observations, data were quantile normalised with
the function normalizeQuantiles of the R package limma (version
2.12.0, Bioconductor). DNA methylation was quantified on a scale of
0–1, where 1 represents 100% methylation.

Separate principal component analyses (PCA) were carried out on
HumanMethylation450K and EPIC positive control probe signal
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intensities. These probes assess multiple steps in the laboratory pro-
cessing and the resulting principal components (PCs), which capture
technical variability in the experiment, were included as covariates in
our discovery and replication models to remove technical biases139.

RNA sequencing
RNA sequencing was carried out in the 96 samples with paired DNA
methylation results from the replication cohort. Sample order was
randomised for library preparation and sequencing. Total RNA was
quantified using theQubit Fluorometer (RNAHSAssay) and aliquots of
10-ng were used for library preparation. RNA integrity numbers (RINs,
Aligent 2100 Bioanalyzer) ranged from 2.5 to 7.9 (median 5.8), an
indication of suboptimal transcript quality in isolated human adipo-
cytes (stored at −80 C). Sequencing libraries were therefore generated
using the SMARTer Stranded Total RNA-Seq Kits (v2 Pico input) which
uses Switching Mechanism at the 5ʹ end of RNA Template technology
and random priming to make cDNA from low-quality, low-input RNA
volumes. Takara Bio/Clontech recommendations were followed at
each library preparation stage (fragmentation, first-strand cDNA
synthesis, addition of adapters and indexing, AMPure bead purifica-
tion, library amplification, AMPure bead repeat purification). Final
libraries were validated using the Aligent BioAnalyzer (DNA1000 and
High Sensitivity chips) and 2 failed libraries were removed. Sample-
specific libraries were pooled at equimolar concentrations (4 nM) to
avoid batch effects and sequenced according to the manufacturer’s
protocols using theHiSeq4000 (16 lanes). Each samplewas sequenced
to >80 million 100-bp paired-end reads.

Raw sequencing data was demultiplexed using Bcl2Fastq (version
2.20) and read qualitywas checked using fastQC (version0.11.5). Reads
were adapter trimmed (Illumina generic adapters) andmapped against
the Ensembl human reference genome GRCh37 v87 using the splice
aware aligner STAR (version 2.6.0, options: -outFilterMultimapNmax
20 -outFilterMismatchNoverReadLmax 0.04). Lane level bams were
merged, sorted and indexed using Samtools (version 1.9) to create
library level bams for each sample. Mapping rates and quality control
measures were evaluated level using Picard (version 2.18.12) and
RseQC (version 2.6.4), and summarised using MultiQC (version 1.9).
Raw counts per gene were generated using FeatureCounts (subread
version 1.6.2); multimapped reads were included (options: -M -frac-
tion) to capture short reads resulting from lower quality transcripts.
2 samples with low number of aligned reads (<15M) reflecting low-
quality libraries were excluded. 3 other outlying samples with low
median transcript integrity (TIN) or evidence of GC biaswere removed
(Supplementary Fig. 18). After exclusions, gene expression resultswere
available for 43 subcutaneous and 46 visceral adipocyte samples and
24,187 genes (counts ≥5 in ≥20% of samples). As a final QC step, sur-
rogate variable analysis (SVA140) was carried out on variance stabilising
transformed counts (generated using DESeq2, version 1.28.0141) for
each sample to capture unwanted variation in our RNA sequencing
data, particularly that arising due to differences in transcript and
sequencing quality (Supplementary Fig. 18). The resulting surrogate
variables (SV)were included as covariates in 5mC regressionmodels to
remove associations driven by sample and sequencing biases.

Epigenome-wide association analyses
All methylation-phenotype analyses were carried out separately in
subcutaneous and visceral adipocytes. 44,101 probes were removed
because of known cross hybridisation142,143 or presence of a common
genetic variant (SNP, indels, or structural variation, 1000Genomes
European phase 3 dataset, MAF > 1%) within the probe sequence. After
QC and removal of problem probes, only the 401,595 single CG sites
present on both the Illumina HumanMethylation450 and EPIC bead-
chips were investigated. Single markers passing quality control were
tested for associationwith extreme obesity using linear regression and
an established analytic strategy to reduce batch and other technical

confounding effects139. Obesity status was used as the predictor with
methylation as the outcome variable to generate %-methylation dif-
ferences between cases and controls. Covariate adjustments were
made for potential biological (age, sex and ethnicity) and technical
confounding variables (the first 4 control probe PCs which explained
>95% of control probe technical variation). Association results from
the discovery and replication cohorts were combined using inverse
variance weighted (IVW) meta-analysis and evaluated for hetero-
geneity. Sex-stratified analyses were not carried due to limited power
to detect sex-specific effects in our cohorts.

Statistical significance was inferred at FDR <0.0133,34 in the dis-
covery sample to provide an inclusive set of biologically relevant
results. A more stringent cut off of (i) FDR <0.01 in the replication
sample (with consistent direction of effect) and (ii) combined
P < 1 × 10–7 (epigenome-wide significance, EWS139) in the combined
discovery and replication samples was then used to define significant
associations. Markers associated with obesity at P < 1 × 10–7 within
±5000-bp of each other were considered as a single genomic locus.
A ± 5000-bp distance was selected to take into account the known
sizes of discrete regions of DNA methylation, for example CGIs144. At
each independent locus the CG site with lowest P value for association
with obesity was defined as the sentinel marker.

Depot-specificity was evaluated by replication testing sentinel
sites identified in subcutaneous and/or visceral adipocytes among
N = 538 independent whole subcutaneous adipose tissue samples
from the Twins UK cohort (cohort description provided in Methods:
Genetic association analyses section). Methylation profiling, quality
control and data analysis was carried out as described previously37.
822 of the 864 identified methylation sentinels were available for
replication testing after quality control filtering. Individual sentinel
sites were tested for association with linear change in BMI using
mixed effects models adjusting for biological and technical covari-
ates (fixed effects: age, smoking status, cell type proportion,
methylation chip, sample position; random effects: zygosity, family).
An exact binomial test (R function binom.test) was used to test
whether consist directions of effect between discovery and replica-
tion, and between subcutaneous and visceral, were observed more
often than expected by chance.

Genetic confounding and adipocyte purity
Genotype data for each participant was generated from whole blood
using Illumina Infinium OmniExpress-24 v1.2 beadchips. We removed
directly genotyped SNPs with call rates <90%, minor allele frequency
<0.01, Hardy-Weinberg Equilibrium P < 1 × 10–6, SNPs on sex chromo-
somes and duplicated SNPs. After quality control, 649,007 SNPs were
taken forward for imputation. SHAPEIT145 was used to infer haplotypes,
and imputation was carried out in IMPUTE2 (version 2.3.2146) using the
1000 genome reference panel Phase 3 (all ancestries). Each chromo-
some was divided into 5Mb chunks for imputation and merged at the
end. A random seed was supplied automatically. Effective population
size (Ne) reflecting genetic diversity was 20,000 as recommended
when using a multi-population reference panel. After imputation,
genotype data was available for 81,656,368 SNPs. Sensitivity analyses
were carried out in combined discovery and replication results (IVW
meta-analysis). Multivariate regression models with and without
genetic confounding factors were compared (Supplementary Fig. 2A
and B). First, PCA was performed on participant GWAS data and the
first 5 PCs explaining >95% of inter-individual variation were included
as covariates to adjust for population stratification. Second, the effects
of cis-SNPs (within 500-kb) on methylation-phenotype associations
were examined by including (i) the cis-SNP most strongly associated
withDNAmethylation and (ii) all independent cis-SNPs associatedwith
DNA methylation at FDR <0.01 (pairwise LD R2< 0.8) in multivariate
regression models. Gaphunting from the Minfi package was also used
to identify and flag methylation sites at which the distribution of
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methylation was consistent with an underlying SNP driven effect
(version 1.36.036,138 Supplementary Data 2 and 3).

Purity of the isolated adipocytes was evaluated using two
approaches. First, in the replication cohort, RNA sequencing results for
immune and stromovascular cell-specific genes were used to evaluate
associations driven by potential contamination (broad immune cell—
PTPRC; monocyte/macrophage—CD68, ITGAM, CD14; B/T cell—
TNFRSF8, CD19, CD4, CD8A, CD2; NK cell—NCAM1; endothelial cell—
CD31; preadipocyte—DLK1, CD34). Replication models without and
with variance stabilised transformed gene expression counts (DESeq2,
version 1.28.0) were compared for each immune- or stromovascular
cell-specific gene (Supplementary Fig. 3A and B). PCA analysis was also
carried out to summarise the variance across the potential con-
taminating cell genes, and models without and with PCs were com-
pared (Supplementary Fig. 3A and B). Second, in the combined
discovery and replication cohorts, SVA analysis was performed to
capture unexplained variation due to cellular heterogeneity (resulting
from contamination) and other potential confounding factors in our
high-dimensional DNAmethylation data140,147–149. The resulting SV were
then included as covariates in regression models to test whether the
observed associations were driven by impurity or other unknown
confounding factors (Supplementary Fig. 4).

Methylation-expression analyses
Individual sentinel 5mC sites were assigned to potential target genes
using three approaches. First, sentinels in exons, 5/3ʹ UTRs or within
5-kb of a promoter were assigned to overlapping genes. A 5-kb cut-off
to define a promoter region was selected based on an observed drop
off in the number of 5mC sentinels beyond this distance from their
respective TSS (using sequential 1-kb bins). Second, for 5mC sites in
intronic/intergenic regions, we overlapped the sentinel methylation
site with distal chromosomal intervals connected to proximal gene
transcription start sites from: i. Adipocyte Capture Hi-C results; and ii.
the GeneHancer enhancer-promoter inference database43. Human
adipocyte Capture Hi-C data was available at GEO (Accession ID:
GSE11061957) as pre-processed and pre-called interactions. Gene-
Hancer interactions were taken from the combined standard and elite
functional interaction sets, with removal of standard interactions
defined by proximity alone. Third, for those intronic/intergenic senti-
nels not assigned to a functional targeted gene, we intersected the
sentinel sites with adipocyte-specific TADs, and took all genes within
intersected sentinel-TAD pairs as potential targets. Adipocyte TADs
were called from available Hi-C data generated at day 3 of human
adipocyte differentiation in vitro (GEO, Accession ID: GSE10992458).
TADs were called from bed files, using Arrowhead at 25-kb resolution
with default parameters, and merged, removing hierarchal structures
by retaining largest domains to maximise TAD coverage, for a final set
of 5323 domains of median 425-kb, range 125-kb to 4,025-kb intervals.

Sentinel 5mC sites were tested for association with expression of
eachof their functionally assigned target genes using linear regression.
Initially, we carried out association testing separately in subcutaneous
and visceral adipocytes, but had limited power to detect methylation-
expression associations. Thus, for our final analyses we used the
combined subcutaneous and visceral adipocyte datasets to identify
methylation-expression relationships, and mixed-effect modelling to
control for sample relatedness (i.e. subcutaneous and visceral adipo-
cytes from the same individuals). Mixed effect models were imple-
mented using Dream analysis from the Bioconductor package
variancePartition (version 1.18.0) in R; methylation betas were used as
the predictor and logCPM transformed gene expression counts
(voomWithDreamWeights) as the outcome. Study participant ID was
included as a random effect. Twomethylation control probe PCs, two
SVs generated using SVA of the gene expression counts, age, sex, and
ethnicity, and RNA integrity numbers (RINs) were included as fixed
effects to adjust for technical, biological and sample-related biases.

Mixed model results from Dream were compared with those from the
nlme R package (version 3.1-149, using variance stabilised transformed
counts from DESeq2, version 1.28.0) as a further sensitivity test. Sta-
tistical significancewas inferred at FDR <0.01 (qvalue version 2.20.033)
based on the number of methylation-target gene pairs analysed.

Differential expression analyses in obese cases and controls were
carried out separately in subcutaneous and visceral adipocytes to
evaluate concordance with methylation-target gene expression chan-
ges (DESeq2, raw counts, adjusted for age, sex, ethnicity, RIN and 2
SVs). Differential expression analyses (DESeq2) were also carried out
across the range of BMI in bulk RNA sequencing data from whole
subcutaneous (N = 663) and visceral (N = 541) adipose tissue samples in
the GTEx Consortium database (dbGaP accession number
phs000424.v8.p2, 23/02/2022) using raw counts adjusted for age, sex,
ethnicity and the SVs generated by SVA (separately in subcutaneous
and visceral tissues). Enrichment was evaluated using an exact bino-
mial test comparing the observed (number of differentially expressed
target genes) with the background expected (total number of differ-
entially expressed genes) success rates.

Functional enrichment analyses
All functional enrichment analyses were carried out using permutation
testing as Illumina methylation arrays preferentially evaluate pre-
selected genomic sites (e.g. CG islands) and well-annotated genes. For
each sentinel CG site, we identified a permutation set of 1000 unique
CG sites with equivalent methylation levels and variability in their
respective subcutaneous or visceral adipocyte samples, using the fol-
lowing criteria: i. difference in mean between sentinel and permuta-
tion; ii. difference in standard deviation (sd) between sentinel and
permutation; and iii. >5-kb distance between sentinel and permutation
(i.e. not at the same genomic locus). For each sentinel, difference in
mean and sd were based on a sliding scale starting at mean 0.025 and
sd 0.0025 and increasing incrementally by mean 0.025 and sd 0.0025
until >1000 independent permutated CG sites were achieved. This
approach was selected because a low fixed mean/sd was too stringent
to generate 1000 permutations at some sentinels, while a higher fixed
mean/sd was too permissive at other sentinels.

For genomic enrichment analyses, we compared the number of
sentinels located in a genomic feature (observed frequency)with that
in each of the 1000 permutation sets (expected frequency). For
humanobesity andmetabolic diseaseGWAS enrichment analyses, we
identified methylation sites and GWAS SNPs (P < 5 × 10–8) in shared
same Adipocyte Roadmap Chromatin State (E025), and compared
the frequencies between the sentinels and the permuted back-
ground. We used the same permutation-based approach for our
nearest gene pathway analyses, but limited our analyses to one sen-
tinel per gene and one permutation per gene, to avoid recounting
genes. The nearest gene to each sentinel was identified using the
ChIPseeker annotation package (version 1.28.3150), which prioritises
overlaps in promoters over other features (ranking: promoter, 5/
3ʹUTR, Exon, Intron, Intergenic). Nearest genes were cross-
referenced with the Molecular Signatures Database (MsigDB, hall-
mark, curated and ontology gene sets151,152). Differences in observed
and expected frequencies were calculated using the Fishers Exact
test and Empirical P values. Gene set enrichment analyses of genes
associated with methylation in adipocytes were carried out in
gProfiler90, using a background of the nearest gene to each of the
1000 permuted CG sites, limited to genes expressed in our human
adipocyte RNA sequencing data.

Transcription factor binding site analyses
De novo transcription factor binding motif enrichment analysis was
performed using the script fingMotifGenome.pl from the Homer pro-
gram package (version 4.11.1). Subcutaneous and visceral sentinels
were investigated separately. Regions of interest were selected by
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extending each sentinel site for ±150-bp on each side. The enrichment
analysis was done using two different backgrounds as controls: i. the
±150-bp regions around the 1000 permutation sites specific to each
sentinel; and ii. genomic regions with GC% matching those of sentinel
regions. At each motif, we identified the 10 transcription factors most
likely to interact with that motif (best match between known motifs
and the discovered motif) to provide a sizeable but manageable
number of TFs. We then restricted these TFs to those expressed in our
human RNA sequencing data (counts ≥5 in ≥20% of samples).

Positions in the regionaround the sentinel of respectivemotifs for
analysis were inferred with the annotatePeaks.pl script from the
Homer program package, with the options -rmrevopp to account for
palindromic motifs. Genomic CpG sites relative to motifs were
retrieved using the Bioconductor package seqPattern (version 1.20.0)
in R. Correlation analyses of TF expression and methylation of their
corresponding sentinels were carried out in the depot in which the
sentinel was identified. Relationships between TFs, their respective
sentinels and the predicted target genes of each sentinel (assigned
sequentially first by promoter/exon/UTR overlap, then by functional
interaction, then by shared TAD) were studied in combined sub-
cutaneous and visceral adipocyte samples to increase power. Asso-
ciations between TF and target gene expression were examined (i)
without and (ii) with adjustment for sentinel DNAmethylation level to
explore the effects of sentinel methylation sites on TF-target gene
relationships. Mixed effects models were carried out in the package
nlme package (version 3.1_149) to adjust for sample relatedness; age,
sex, ethnicity, two methylation control probe PCs and two gene
expression SVs were included as fixed effect covariates to adjust for
potential confounding variables. For all TF expression analyses, var-
iance stabilising transformed counts (DESeq2, version 1.28.0)
were used.

Genetic association analyses
Two sampleMendelian Randomisation (MR) analyses were carried out
to investigate causal relationships between individual sentinel 5mC
sites and human obesity phenotypes using: i. 588 whole subcutaneous
adipose tissue (WSAT) samples from the Twins UK cohort; and ii.
summary results from recent large-scale human GWAS.

The Twins UK cohort is a nationwide registry of healthy volunteer
twins in the United Kingdom,with about 14,000 registered twins since
1992, predominately Caucasian female (84%) and equal number of
monozygotic and same-sex dizygotic twins. Twins UK phenotypic
measurements, adipose tissue biopsies, genome-wide SNP and DNA
methylation assays were performed as previously described110–112.
Briefly, samples were genotyped using HumanHap300, Human-
Hap610Q, HumanHap1M Duo, and HumanHap1.2M Duo 1M arrays.
Haplotypes from IMPUTE2 (without a reference panel) were used for
fast imputation to the 1000 Genomes phase 1 dataset. Imputed SNPs
were excluded based on Hardy Weinberg equilibrium (P < 1e-6), allele
frequency cut-offs (MAF <0.01), missingness (>5%) and imputation
quality (info score < 0.8). Individuals withmis-assigned sex or ancestry
outliers were removed. Ancestry outliers (> 7 SD) were obtained from
PLINK 2.0 (unrelated) and GENESIS (related participants). Related
individuals with IBS >0.125 (PLINK 2.0) were also excluded. DNA
methylation profiles in adipose tissue biopsies were obtained as
described previously112. Methylation results were available for 588 out
of 596 twins after further quality control analyses113. All individuals
were female (mean (sd) age 59.1 (9.4)).

Human GWAS comprised: BMI as a measure of obesity (GIANT
2018, transethnic48); WHR adjusted for BMI as a measure of central
adiposity (GIANT 2018, transethnic49); fasting glucose and insulin
(MAGIC, Europeans, unpublished); HbA1c (MAGIC 2017114); T2D and
T2D adjusted from BMI (DIAGRAM 2018, Europeans50); HDL and LDL
cholesterol and triglycerides (Global Lipids GeneticsConsortium 2021,
transethnic115).

Cis-SNPs within ±500-kb of each subcutaneous and visceral sen-
tinel were tested for association with change in sentinel DNA methy-
lation level in WSAT using linear regression. DNA methylation levels
were adjusted for technical covariates, age, predicted smoking, family
relatedness, genetic principal components (PCs) and non-genetic DNA
methylation PCs.Methylation-genotype associationswere evaluated in
the MatrixEQTL package in R (version 2.1.0) using linear models, with
the adjusted methylation values as the dependent variable and the
dosage of alternative allele the independent variable. Ambiguous
palindromic cis-SNPs with MAF >0.42 were removed. For each senti-
nel, cis-SNPs were clumped (linkage disequilibrium (LD) R2 <0.01) and
independent methylation quantitative trait locus (mQTL) SNPs asso-
ciated with DNA methylation at P <0.05 (Bonferroni corrected for the
number of SNPs) were selected. Primary MR analyses of these mQTL
SNPs and human GWAS phenotypes were implemented in R using the
TwoSampleMR package (version 0.5.1116,117). Causal relationships were
tested using the most powerful MR method (Wald Test for single
mQTL SNPs, and Inverse Variance Weighted method for multiple
mQTL SNPs). Cause-consequence directions of effect were evaluated
using the Steiger directionality test, which compares SNP-methylation
and SNP-phenotype R2 values. Potential causal effects of methylation
on phenotype inferred if both the MR and Steiger tests passed a sig-
nificance threshold of FDR <0.01.

MR sensitivity testingwas carried out using two approaches. First,
we evaluated MR assumptions by repeating our MR analyses using
correlated cis-SNPs (within ±500-kb, clumped at LD R2 > 0.8, and
associated with methylation at P <0.05 Bonferroni corrected) in the R
package MendelianRandomization (version 0.4.1); correlated cis-SNPs
were used as no sentinels had ≥3 uncorrelated cis-SNPs for such ana-
lyses. MR IVW and MR Egger regression were used to test for: i. repli-
cation; ii. heterogeneity between SNPs; and iii. evidence of horizontal
pleiotropy; at each sentinel with ≥3 correlated cis-mQTLs. Second, we
replication tested WSAT mQTLs implicated in positive MR results
amongst our subcutaneous and visceral adipocyte samples using SNP
as the predictor, methylation beta as the outcome, and adjusting for
biological and technical confounders (age, sex, ethnicity, control
probe PCs 1-4). For WSAT mQTL SNPs not present in our adipocyte
dataset, we identified a proxy SNP present in adipocytes (the cis-SNP
( ± 500-kb) with the greatest pairwise LD with the mQTL SNP and
minimum R2>0.8) and used the correlated allele to evaluate for
association with methylation and concordance of directions of effect.

In vitro gene silencing studies
The 3T3-L1 pre-adipocyte mouse cell line (ATCC-CL-173) was obtained
commercially (LGC). Pre-adipocytes were grown in Dulbecco’s Mod-
ified Eagles Media with 10% newborn calf serum (NCS) and 1% peni-
cillin/ streptomycin (P/S). Two days post-confluence (Day 0)
differentiation was induced by switching cells to DMEM supplemented
with 10% foetal bovine serum (FBS), 10-µg/ml insulin, 0.5-mM IBMX,
1-µM dexamethasone and 2-µM rosiglitazone. On day 2, cell media was
refreshedwith insulinmedia (DMEMcontaining 10-µg/ml insulin). Cells
were maintained at 37 C and 5% CO2 and were differentiated in 10-cm
dishes until undergoing siRNA reverse transfection.

Early differentiation 3T3-L1 adipocyteswere reverse transfected at
Day 2 of differentiation with Silencer Select siRNAs (Ambion) as
described below, adapting reported methods153. Two different siRNAs
against each target were used in concert to enhance target gene
knockdown. Cells were transfected with siRNAs against either Limd2
(ID; s85672; s85674), Prrc2a (ID; s79278; s79279) or a non-silencing
(NS) (ID; Negative control #1) siRNA. RNAiMax lipofectamine trans-
fection reagent (Life Technologies) and siRNAswere diluted separately
inOpti-MEMmedia (Gibco),mixed together, added to emptywells and
incubated for 20-mins before cell suspensionwas seeded. To eachwell
of a 6-well and 12-well plate, 50-pmol of siRNA (25-pmol each siRNA)
and 30-pmol siRNA (15-pmol each siRNA) were added respectively. For
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NS control, a single siRNA was used at the same total pmol quantity as
for targets. Differentiating 3T3-L1 adipocytes in 10-cm dishes were
detached at Day 2 of differentiation by treating with Tryple Express
(Gibco) for 10-mins.Cellswere counted, resuspended at450,000cells/
ml in DMEM insulin media (insulin, 10-µg/ml), and added to 12-well
(1ml; 450,000 cells/well) and 6-well plates (2ml; 900,000 cells/well)
containing the pre-incubated siRNA transfection mix. The next day
cells were refreshed with new insulin media (10-µg/ml insulin). On day
6, siRNA treated differentiated cells were harvested for RNA (6-well
plates) or assayed for lipid accumulation (12-well plate; Oil Red O). The
two distinct siRNAs for each target gene, which were designed to tar-
get different regions of the Prrc2a and Limd2mRNAs, were also tested
individually to rule out off target effects.

Oil red O (ORO) staining was performed to assess lipid accumu-
lation inmature 3T3-L1 cells (Day 6) that were reverse transfected with
siRNA at early differentiation (Day 2). The protocol used was similar to
that describedpreviously154 withmodifications. Cellswerewashedwith
PBS and fixedwith 10%neutral formalin for 1-h. After formalin removal,
cells were washed with sterile water then exposed to 60% isopropanol
for 3-mins. After removal of 60% isopropanol, cells were stained with
ORO solution (Sigma) for 10-mins, and thenwashedwith water until all
extracellular ORO was completely removed. At this point images of
ORO staining at 4X and 10X magnification were acquired using the
Evos m7000 microscope (Thermo Scientific). Cells were treated with
100% isopropanol for 10-mins to extract ORO stain from lipid in cells
for quantification by measuring elute absorbance at 500-nM using
SpectrumMax 340PC plate reader (Molecular Devices). Samples were
added to 96-well plate in quadruplicate along with known ORO
quantities (µg/ml) to make a standard curve to calculate µg of ORO
eluted. Following ORO elution, cells were washed 2x with water to
allow crystal violet (CV) nuclear staining for relative cell number nor-
malisation. Cells were stained with 0.05% CV for 10-mins, followed by
4×10-min washes with water to remove all extracellular CV. SDS (1%)
was added to cell plates and incubated for 10-mins with constant
orbital agitation at 150 rpm to lyse cells and allowCV absorbance in the
lysate to be measured at 560-nM using the SpectrumMax 340PC plate
reader. CV samples were added to 96-well plates in quadruplicate
along with known CV quantities (µg/ml) to generate a standard curve
to calculate µg of CV and to thus normalise ORO data to relative cell
number.

Total RNA was isolated from siRNA transfected 3T3-L1 adipocytes
at Day 6 using Qiazol reagent and the RNeasy mini kit (Qiagen)
according to manufacturers’ instructions, with on-column DNase
(Qiagen) treatment performed during RNA isolation. The High-
Capacity RNA-to-cDNA kit was used to generate cDNA by reverse
transcription of 1-µg total RNA. RT-qPCR gene expression analysis was
performed using the CFX384 Touch Real-Time PCR Detection System
(BioRad), SSO advanced Universal SYBR Green Supermix mix, gene-
specific primers (500-nM final concentration) and cDNA in a 10-µl total
reaction volume. qPCR conditions were: 3-min at 95 C, then 40 cycles
of 95 C for 10-s, 60C for 30-s and followed by melting curve analysis
from65-95 C in0.5 C steps at 5-secs/step. Sequences of primersused in
qPCR analysis are listed in Supplementary Data 24. Gene expression
was quantified using the delta-delta Ct (2-ΔΔCT) method and is shown
relative to thenon-silencing group. TwohousekeepinggenesNono and
Ywhazwere utilised, with their geometric mean expression being used
for normalisation. Effects of knockdown on genes involved in adipo-
cyte differentiation (Pparg), insulin signalling (Glut4, Irs1), lipid uptake
(Lpl), lipid storage (Fasn, Acaca, Scd1) and lipid mobilisation (Fabp4,
Hsl) were evaluated155.

Cell viability was evaluated in siRNA treated 3T3-L1 cells using the
RealTime-Glo™ MT Cell Viability Assay (Promega). Cells were trans-
fected with individual siRNAs against Limd2 (IDs s85672 and s85674),
Prrc2a (ID, s79278 and s79279) or a non-silencing (NS) (ID; Negative
control #1) siRNA as described above. Briefly, 3T3-L1 cells were

simultaneously plated into 96-well white-walled clear-bottom assay
plates (5,000 cells/well), treated with siRNAs (2-pmol siRNA/well) and
incubated with the RealTime-Glo™ reagent according to the manu-
facturer’s protocol. The luminescence signal (Relative Light Units),
which corresponds to the number of metabolically active cells, was
then measured at 4-h, 24-h, 48-h and 72-h post siRNA treatment in
these live cells.

GraphPad Prism was used to perform Student’s t tests (two
groups) or One-Way ANOVA tests (multiple groups, Dunnett’s test for
multiple comparisons) for analyses of gene expression, Oil Red O and
luminescence. Gene expression and Oil Red O data are shown relative
to the non-silencing group. All data are presented as means ± SEM.

In vitro CRISPR-activation studies
CRISPR-activation at the PRRC2A and LIMD2 loci was carried out in
2 steps, transduction of the CRISPR-activation and then guide RNA
(gRNA) vectors, in polyclonal human adipocytes. For each target gene
we designed 3 distinct guides (Supplementary Fig. 16, Supplementary
Data 25) and paired these guides in 3 different combinations to target
the CRISPR-activation complex to the region of interest (Termed: F1/
R2 for Guides 1 and 2; F1/R3 for Guides 1 and 3; F2/R3 for Guides 2 and
3). CRISPR gRNA were designed in CRISPOR156 and CHOPCHOP157 to
target a 150-bp window at the peak of respective open chromatin sites
(Supplementary Fig. 16, Supplementary Data 25). The top 3 guideswith
the lowest off-target scores were selected for use in pairs to target the
CRISPR-activation systems to the 150-bp site (Supplementary Data 25).
3 control gRNA were selected from published studies158,159 to target
adeno-associated virus integration site 1 (AAVS1), a non-functioning
viral integration site encoded on human chromosome 19. Guide RNA
plasmids were synthesised using a previously published dual gRNA
approach123. Primers containing target gRNA and BsmBI ligation sites
(Supplementary Data 26) were used on template pScaffold-H1
(Addgene #118152) DNA to generate PCR products containing dual
gRNA that were then ligated into the LentiGuide-Hygro (Addgene#
139462) vector in a single-step digestion-ligation reaction. The result-
ing vectors were transformed into NEB stable bacteria and successful
clones were confirmed by Sanger sequencing (Supplementary
Data 25).

HEK293T cells grown in Dulbecco’s modified Eagle’s medium
(DMEM) with 10% foetal bovine serum (FBS) and 1% penicillin/strep-
tomycin (P/S) and incubated at 5% CO2 and 37C, were co-transfected
with LentiGuide-Hygro gRNA vectors using PEIpro (PolyPlus) and
packaging plasmids (pMD2.G, psPAX2, Addgene #12259 and #12260).
Cell media was changed 16-h after transfection. Lentiviral particles
were collected at 24-h, 48-h and 72-h aftermedia change, concentrated
overnight using Lenti-X Concentrator (Takara Bio #631231), resus-
pended in media and stored at −80C. Lentiviral titre were quantified
using qPCR Lentivirus Titre Kit (abm #LV900).

Immortalized Human Adipose-derived Stromal (ihASC) cells
overexpressing Bmi-1 and hTERT160 were obtained commercially
(abm #T0540). ihASC cells were grown in Dulbecco’s Modified Eagle
Medium/Nutrient Mixture F-12 (DMEM/F-12; Gibco) with 10% foetal
bovine serum (FBS; Sigma), 2 ng/ml Fibroblast Growth Factor (FGF)
and 50-µg/ml gentamicin (Gibco), andmaintained at 37 C and 5%CO2.
ihASC cells were transduced with lenti-dCAS9-VP64 (CRISPR-a,
Addgene #61425-LVC) lentivirus and polybrene (10-µg/mL) in 6-well
plates by reverse transduction. Virus was removed and media chan-
ged 48-h post transduction. Transduced ihASC cells were treated
with blasticidin (5-µg/mL) until controls were dead (~ 60–84-h). Suc-
cessfully transduced and selected polyclonal CRISPR-a (lenti-dCAS-
VP64) ihASC cells were then transducedwith LentiGuide-Hygro gRNA
lentivirus using the same approach, except with hygromycin (50-µg/
mL) treatment. 1 guide pair for PRRC2A and 1 guide pair for AAVS1 did
not survive selection leaving 2 guide pairs for PRRC2A, 3 for LIMD2
and 2 for AAVS1.
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After transduction and selection, genomic DNA and total RNAwas
isolated using the AllPrep Mini kit (Qiagen) according to manu-
facturers’ instructions, with on-column DNase treatment during RNA
isolation. High capacity RNA-to-cDNA kits (Applied Biosystems
#4387406) were used to generate cDNA from 1-µg RNA. RT-qPCR gene
expression analysis was performed using the method described pre-
viously, using sequence-specific primers to amplify: the target genes
(PRRC2A, LIMD2); neighbouring genes (BAG6, STRADA, MAP3K3); 2
house-keeping genes (ACTB, GAPDH, Supplementary Data 26). Suc-
cessful vector transduction in transduced cells was confirmed by PCR
amplification of DNA using primers specific to each vector (targeting
Cas9 for lenti-dCAS9-VP64, and Hygro for LentiGuide-Hygro) and gel
electrophoresis of the products (Supplementary Fig. 17A, Supple-
mentary Data 26). Correct guide pair insertion was verified by PCR
amplification of DNA using primers targeting the LentiGuide-Hygro
vector either side of the guide sequences (Supplementary Data 26),
and Sanger Sequencing of the products (Supplementary Data 25).
Transcriptional activation of the target gene, or neighbouring genes
within the same TAD, was quantified using the delta-delta Ct (2-ΔΔCT)
method relative to the AAVS1 controls. Successful activation was
assessed by comparing expression of the targeted gene in its CRISPR-
activation cell lines with expression of the targeted gene: i. control
AAVS1 cell lines; and ii. the CRISPR activation cell lines targeting a
different gene, in which we would expect no change in expression of
that target gene. Specificity of activation was evaluated by measuring
expression of other neighbouring genes in the same TAD as the target
gene (Supplementary Fig. 17B and C). All results were standardised to
the ACTB and GAPDH housekeeping genes. GraphPad Prism was used
to performOne-Way ANOVA tests for comparisons of gene expression
between multiple groups of activated and control cells.

Lenti-dCAS-VP64_Blast was a gift from Feng Zhang (Addgene
#61425-LVC125); LentiGuide-Hygro was a gift from Caroline Goujon
(Addgene #139462); pMD2.G and psPAX2 were a gift from Didier
Trono (Addgene #12259, #12260); pScaffold-H1 was provided by the
Cebola lab161.

Targeted methylation sequencing
Targeted methylation sequencing was carried using the TWIST
Bioscience Methylation Detection System, and a customised probe
panel, in two stages: i. a technical pilot on 8 human adipocyte sam-
ples; ii. a larger study of 94 human adipocyte samples including
repeat of the 8 pilot samples (23 obese and 24 control subcutaneous,
23 obese and 24 control visceral, from both the discovery replication
cohorts). Sample processing and library preparation was carried out
according to the TWIST Bioscience end-to-end targeted methylation
sequencing workflow. Probes were designed, optimised and synthe-
sised using TWIST’s proprietary algorithms and olio synthesis solu-
tions to target 71 independent genomics regions (totalling 58.9-kb).
For each sample, 20-ng of genomic DNA was used for fragmentation
to ~265 bp (Covaris E220x), A-tailing, universal adapter ligation,
enzymatic methylation conversion (New England Biolabs® EMseqTM)
and PCR amplification (9-16 cycles). 47-200-ng of each enzymatic
converted, amplified, indexed library was then hybridised in multi-
plex (pools of 8-samples) to the customised panel probes (120-mins),
captured using streptavidin beads, amplified and then purified to
generate target-enriched enzyme-converted DNA libraries for
sequencing. Pilot libraries were sequencedwith spike in negative and
positive controls using the Illumina NovaSeq 6000 platform (100-bp
paired-end); main study libraries were sequenced across 3 runs of
Illumina NextSeq 2000 P2 (100-bp paired-end); both aiming for a
median coverage of >100X.

Raw sequencing data was demultiplexed using BCLConvert (Ver-
sion 4.0.3) and read quality was evaluated using FastQC. Fastq files
from the 3 sequencing runs were merged (GNU coreutils) for proces-
sing and quality control analyses (using default settings unless

specified). Reads were adapter trimmed using fastp (Version 0.22.0)
with autodetection of adapter length, and then aligned to the refer-
ence genome (Ensembl GRCh37, bwameth Version 0.2.5, samtools
Version 1.6, sambamba Version 0.8.2) following the TWIST recom-
mended pipeline. Duplicates were identified and removed. Picard
(CollectHsMetrics, CollectMultipleMetrics, Version 2.6.0) and
MethylDackel (mbias, Version 0.5.1) were used to generate sequencing
quality metrics, including on-target coverage and methylation con-
version measurements. Methylation levels at individual sites were
called using MethylDackel (–minDepth 10–maxVariantFrac 0.25–OT
0,0,0,96—OB 0,0,4,0; except for 9 samples where—OT and—OB values
were customised to trim methylation biases observed at the ends of
reads). The BISulfite-seq CUI Toolkit (BISCUIT162, version 1.0.2) was
used to call SNPs/genotypes and confirm sample identities using a
version of theVanAndel Institute Bioinformatics andBiostatisticsCore
Snakemake workflow163,164 adapted for the Altair PBS Professional
workload manager. Methylation.bed files were processed using the
Methrix package (Version 4.2) in R. 5 samples with low median on
target coverage (<25X) were removed. For each remaining sample,
methylation sites with low coverage (<25X), overlapping known SNPs
(MAF > 0.01, 1000-Genomes Phase 3), and not in the genomic regions
targeted by probes, were removed. Differences in DNA methylation
between obese cases and controls were analysed separately for sub-
cutaneous and visceral adipocytes, using linear models adjusting for
biological covariates (age, sex and ethnicity). Concordance, precision
and platform biases were evaluated in: i. the 8 samples present in the
pilot and main cohorts; and ii. the main cohort at sites present in both
the array and targeted methylation sequencing datasets. At the
PRRC2A locus, the sequences (extendedby ±6-bp around) around the 5
methylation sites in the region of interest were used as input for
scanning with 692 human motifs in the JASPAR2022 database165. The
sequences were scanned using the searchSeq function from the
TFBSTools Bioconductor package, v1.36.0166 with a threshold of 85%
motif similarity.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Genome-wide DNA methylation data from the discovery and replica-
tion cohorts are deposited in the Gene Expression Omnibus (GEO
accession No: GSE222595). Raw RNA sequencing data from the repli-
cation cohort are available in the European Genome-Phenome Archive
(EGA study no. EGAS00001007118) to provide managed open access
to genetic variant containing data. Associated participant character-
istics are provided for bothmethylation and RNA sequencing datasets.
Methylation bedGraph files of the methylation differences in obese
compared to lean subcutaneous and visceral adipocytes (combined
discovery and replication cohort) are also available at GEO (accession
No: GSE222595). The following publicly available datasets were used in
this study: GeneHancer43 (https://www.genecards.org/), Human adi-
pocyte Capture Hi-C57 (GSE110619), Human adipocyte TADs58

(GSE109924), Human adipocyte ATAC121 (GSE110734), Roadmap Epi-
genomes (https://egg2.wustl.edu/roadmap/web_portal/),
JASPAR2022165 (https://jaspar.genereg.net/) and the Molecular Sig-
natures Database (MsigDB151 https://www.gsea-msigdb.org/gsea/
msigdb/). Human GWAS summary statistics were obtained from:
GIANT48 (https://portals.broadinstitute.org/collaboration/giant/index.
php/GIANT_consortium_data_files), MAGIC114 (https://
magicinvestigators.org/downloads/), DIAGRAM50 (https://diagram-
consortium.org/downloads.html), and the Global Lipids Genetics
Consortium115 (https://csg.sph.umich.edu/willer/public/glgc-
lipids2021/). Source data for adipocyte functional studies are pro-
vided with this paper. Source data are provided with this paper.
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Code availability
Data analysis pipelines used in this study for epigenome-wide asso-
ciation, methylation-expression, methylation-transcription factor,
TwoSample Mendelian Randomisation analyses, and targeted methy-
lation sequencing, can be obtained from https://github.com/
WRScottImperial/Human-adipocyte-5mC-obesity.
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