22 research outputs found

    Contributions of synaptic filters to models of synaptically stored memory

    No full text
    The question of how neural systems encode memories in one-shot without immediately disrupting previously stored information has puzzled theoretical neuroscientists for years and it is the central topic of this thesis. Previous attempts on this topic, have proposed that synapses probabilistically update in response to plasticity inducing stimuli to effectively delay the degradation of old memories in the face of ongoing memory storage. Indeed, experiments have shown that synapses do not immediately respond to plasticity inducing stimuli, since these must be presented many times before synaptic plasticity is expressed. Such a delay could be due to the stochastic nature of synaptic plasticity or perhaps because induction signals are integrated before overt strength changes occur.The later approach has been previously applied to control fluctuations in neural development by low-pass filtering induction signals before plasticity is expressed. In this thesis we consider memory dynamics in a mathematical model with synapses that integrate plasticity induction signals to a threshold before expressing plasticity. We report novel recall dynamics and considerable improvements in memory lifetimes against a prominent model of synaptically stored memory. With integrating synapses the memory trace initially rises before reaching a maximum and then falls. The memory signal dissociates into separate oblivescence and reminiscence components, with reminiscence initially dominating recall. Furthermore, we find that integrating synapses possess natural timescales that can be used to consider the transition to late-phase plasticity under spaced repetition patterns known to lead to optimal storage conditions. We find that threshold crossing statistics differentiate between massed and spaced memory repetition patterns. However, isolated integrative synapses obtain an insufficient statistical sample to detect the stimulation pattern within a few memory repetitions. We extend the modelto consider the cooperation of well-known intracellular signalling pathways in detecting storage conditions by utilizing the profile of postsynaptic depolarization. We find that neuron wide signalling and local synaptic signals can be combined to detect optimal storage conditions that lead to stable forms of plasticity in a synapse specific manner.These models can be further extended to consider heterosynaptic and neuromodulatory interactions for late-phase plasticity.<br/

    Using an insect mushroom body circuit to encode route memory in complex natural environments

    Get PDF
    Ants, like many other animals, use visual memory to follow extended routes through complex environments, but it is unknown how their small brains implement this capability. The mushroom body neuropils have been identified as a crucial memory circuit in the insect brain, but their function has mostly been explored for simple olfactory association tasks. We show that a spiking neural model of this circuit originally developed to describe fruitfly (Drosophila melanogaster) olfactory association, can also account for the ability of desert ants (Cataglyphis velox) to rapidly learn visual routes through complex natural environments. We further demonstrate that abstracting the key computational principles of this circuit, which include one-shot learning of sparse codes, enables the theoretical storage capacity of the ant mushroom body to be estimated at hundreds of independent images

    Taming fluctuations in a stochastic model of spike-timing-dependent plasticity

    No full text
    A stochastic model of spike-timing-dependent plasticity proposes that single synapses express fixed-amplitude jumps in strength, the amplitudes being independent of the spike time difference. However, the probability that a jump in strength occurs does depend on spike timing. Although the model has a number of desirable features, the stochasticity of response of a synapse introduces potentially large fluctuations into changes in synaptic strength. These can destabilize the segregated patterns of afferent connectivity characteristic of neuronal development. Previously we have taken these jumps to be small relative to overall synaptic strengths to control fluctuations, but doing so increases developmental timescales unacceptably. Here, we explore three alternative ways of taming fluctuations. First, a calculation of the variance for the change in synaptic strength shows that the mean change eventually dominates fluctuations, but on timescales that are too long. Second, it is possible that fluctuations in strength may cancel between synapses, but we show that correlations between synapses emasculate the law of large numbers. Finally, by separating plasticity induction and expression, we introduce a temporal window during which induction signals are low-pass-filtered before expression. In this way, fluctuations in strength are tamed, stabilizing segregated states of afferent connectivity

    Data from: Using an insect mushroom body circuit to encode route memory in complex natural environments

    No full text
    Ants, like many other animals, use visual memory to follow extended routes through complex environments, but it is unknown how their small brains implement this capability. The mushroom body neuropils have been identified as a crucial memory circuit in the insect brain, but their function has mostly been explored for simple olfactory association tasks. We show that a spiking neural model of this circuit originally developed to describe fruitfly (Drosophila melanogaster) olfactory association, can also account for the ability of desert ants (Cataglyphis velox) to rapidly learn visual routes through complex natural environments. We further demonstrate that abstracting the key computational principles of this circuit, which include one-shot learning of sparse codes, enables the theoretical storage capacity of the ant mushroom body to be estimated at hundreds of independent images

    Combined Toxicity of Cannabidiol Oil with Three Bio-Pesticides against Adults of Sitophilus Zeamais, Rhyzopertha Dominica, Prostephanus Truncatus and Trogoderma Granarium

    No full text
    The present study investigates the interaction between cannabidiol (CBD) oil and three biopesticides: Azatin and two baculovirus formulations (Madex and Helicovex), both separately and in combination, in order to investigate their interaction against adults of four major coleopteran stored-product pests: Sitophilus zeamais (Coleoptera: Curculionidae), Rhyzopertha dominica (Coleoptera: Bostrichidae), Prostephanus truncatus (Coleoptera: Bostrichidae) and Trogoderma granarium (Coleoptera: Dermestidae). CBD, which has been understudied for its insecticidal properties, was applied at three different doses (500, 1500 and 3000 ppm). The biopesticides were administered at 1500 ppm. Interactions in the combined treatments were mathematically estimated as not synergistic and mostly competitive except for the combined treatments of CBD (1500 and 3000 ppm) with Azatin (1500 ppm) which were marked by an additive interaction. In its individual application, CBD oil generated the highest insect mortality while its effect was clearly dose-dependent. The findings reveal a promising effect of CBD oil against these coleopterans which had not been previously tested together
    corecore