300 research outputs found
Scattering Lens Resolves sub-100 nm Structures with Visible Light
The smallest structures that conventional lenses are able to optically
resolve are of the order of 200 nm. We introduce a new type of lens that
exploits multiple scattering of light to generate a scanning nano-sized optical
focus. With an experimental realization of this lens in gallium phosphide we
have succeeded to image gold nanoparticles at 97 nm optical resolution. Our
work is the first lens that provides a resolution in the nanometer regime at
visible wavelengths.Comment: 4 pages, 3 figure
Probing the eigenfunction fractality with a stop watch
We study numerically the distribution of scattering phases
and of Wigner delay times for the power-law banded random
matrix (PBRM) model at criticality with one channel attached to it. We find
that is insensitive to the position of the channel and
undergoes a transition towards uniformity as the bandwidth of the PBRM
model increases. The inverse moments of Wigner delay times scale as
, where are the multifractal
dimensions of the eigenfunctions of the corresponding closed system and is
the system size. The latter scaling law is sensitive to the position of the
channel.Comment: 5 pages, 4 figure
Inhibited spontaneous emission of quantum dots observed in a 3D photonic band gap
We present time-resolved emission experiments of semiconductor quantum dots
in silicon 3D inverse-woodpile photonic band gap crystals. A systematic study
is made of crystals with a range of pore radii to tune the band gap relative to
the emission frequency. The decay rates averaged over all dipole orientations
are inhibited by a factor of 10 in the photonic band gap and enhanced up to 2?
outside the gap, in agreement with theory. We discuss the effects of spatial
inhomogeneity, nonradiative decay, and transition dipole orientations on the
observed inhibition in the band gap.Comment: 5 figures, update author lis
A multiple-scattering approach to interatomic interactions and superradiance in inhomogeneous dielectrics
The dynamics of a collection of resonant atoms embedded inside an
inhomogeneous nondispersive and lossless dielectric is described with a dipole
Hamiltonian that is based on a canonical quantization theory. The dielectric is
described macroscopically by a position-dependent dielectric function and the
atoms as microscopic harmonic oscillators. We identify and discuss the role of
several types of Green tensors that describe the spatio-temporal propagation of
field operators. After integrating out the atomic degrees of freedom, a
multiple-scattering formalism emerges in which an exact Lippmann-Schwinger
equation for the electric field operator plays a central role. The equation
describes atoms as point sources and point scatterers for light. First,
single-atom properties are calculated such as position-dependent
spontaneous-emission rates as well as differential cross sections for elastic
scattering and for resonance fluorescence. Secondly, multi-atom processes are
studied. It is shown that the medium modifies both the resonant and the static
parts of the dipole-dipole interactions. These interatomic interactions may
cause the atoms to scatter and emit light cooperatively. Unlike in free space,
differences in position-dependent emission rates and radiative line shifts
influence cooperative decay in the dielectric. As a generic example, it is
shown that near a partially reflecting plane there is a sharp transition from
two-atom superradiance to single-atom emission as the atomic positions are
varied.Comment: 18 pages, 4 figures, to appear in Physical Review
Exact Quantum Monte Carlo Process for the Statistics of Discrete Systems
We introduce an exact Monte Carlo approach to the statistics of discrete
quantum systems which does not rely on the standard fragmentation of the
imaginary time, or any small parameter. The method deals with discrete objects,
kinks, representing virtual transitions at different moments of time. The
global statistics of kinks is reproduced by explicit local procedures, the key
one being based on the exact solution for the biased two-level system.Comment: 4 pages, latex, no figures, English translation of the paper
Diffusion and Localization of Cold Atoms in 3D Optical Speckle
In this work we re-formulate and solve the self-consistent theory for
localization to a Bose-Einstein condensate expanding in a 3D optical speckle.
The long-range nature of the fluctuations in the potential energy, treated in
the self-consistent Born approximation, make the scattering strongly velocity
dependent, and its consequences for mobility edge and fraction of localized
atoms have been investigated numerically.Comment: 8 pages, 11 figure
Multipole interaction between atoms and their photonic environment
Macroscopic field quantization is presented for a nondispersive photonic
dielectric environment, both in the absence and presence of guest atoms.
Starting with a minimal-coupling Lagrangian, a careful look at functional
derivatives shows how to obtain Maxwell's equations before and after choosing a
suitable gauge. A Hamiltonian is derived with a multipolar interaction between
the guest atoms and the electromagnetic field. Canonical variables and fields
are determined and in particular the field canonically conjugate to the vector
potential is identified by functional differentiation as minus the full
displacement field. An important result is that inside the dielectric a dipole
couples to a field that is neither the (transverse) electric nor the
macroscopic displacement field. The dielectric function is different from the
bulk dielectric function at the position of the dipole, so that local-field
effects must be taken into account.Comment: 17 pages, to be published in Physical Review
Signatures of photon localization
Signatures of photon localization are observed in a constellation of
transport phenomena which reflect the transition from diffusive to localized
waves. The dimensionless conductance, g, and the ratio of the typical spectral
width and spacing of quasimodes, \delta, are key indicators of electronic and
classical wave localization when inelastic processes are absent. However, these
can no longer serve as localization parameters in absorbing samples since the
affect of absorption depends upon the length of the trajectories of partial
waves traversing the sample, which are superposed to create the scattered
field. A robust determination of localization in the presence of absorption is
found, however, in steady-state measurements of the statistics of radiation
transmitted through random samples. This is captured in a single parameter, the
variance of the total transmission normalized to its ensemble average value,
which is equal to the degree of intensity correlation of the transmitted wave,
\kappa. The intertwined effects of localization and absorption can also be
disentangled in the time domain since all waves emerging from the sample at a
fixed time delay from an exciting pulse, t, are suppressed equally by
absorption. As a result, the relative weights of partial waves emerging from
the sample, and hence the statistics of intensity fluctuations and correlation,
and the suppression of propagation by weak localization are not changed by
absorption, and manifest the growing impact of weak localization with t.Comment: RevTex 16 pages, 12 figures; to appear in special issue of J. Phys. A
on quantum chaotic scatterin
Three-dimensional localization of ultracold atoms in an optical disordered potential
We report a study of three-dimensional (3D) localization of ultracold atoms
suspended against gravity, and released in a 3D optical disordered potential
with short correlation lengths in all directions. We observe density profiles
composed of a steady localized part and a diffusive part. Our observations are
compatible with the self-consistent theory of Anderson localization, taking
into account the specific features of the experiment, and in particular the
broad energy distribution of the atoms placed in the disordered potential. The
localization we observe cannot be interpreted as trapping of particles with
energy below the classical percolation threshold.Comment: published in Nature Physics; The present version is the initial
manuscript (unchanged compared to version 1); The published version is
available online at
http://www.nature.com/nphys/journal/vaop/ncurrent/full/nphys2256.htm
The Self-Trapping Line of the Holstein Molecular Crystal Model in One Dimension
The ground state of the Holstein molecular crystal model in one dimension is
studied using the Global-Local variational method, analyzing in particular the
total energy, kinetic energy, phonon energy, and interaction energy over a
broad region of the polaron parameter space. Through the application of
objective criteria, a unique curve is identified that simply, accurately, and
robustly locates the self-trapping transition separating small polaron and
large polaron behavior
- …