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The dynamics of a collection of resonant atoms embedded inside an inhomogeneous nondispersive and
lossless dielectric is described with a dipole Hamiltonian that is based on a canonical quantization theory. The
dielectric is described macroscopically by a position-dependent dielectric function and the atoms as micro-
scopic harmonic oscillators. We identify and discuss the role of several types of Green tensors that describe the
spatio-temporal propagation of field operators. After integrating out the atomic degrees of freedom, a multiple-
scattering formalism emerges in which an exact Lippmann-Schwinger equation for the electric field operator
plays a central role. The equation describes atoms as point sources and point scatterers for light. First, single-
atom properties are calculated such as position-dependent spontaneous-emission rates as well as differential
cross sections for elastic scattering and for resonance fluorescence. Secondly, multiatom processes are studied.
It is shown that the medium modifies both the resonant and the static parts of the dipole-dipole interactions.
These interatomic interactions may cause the atoms to scatter and emit light cooperatively. Unlike in free
space, differences in position-dependent emission rates and radiative line shifts influence cooperative decay in
the dielectric. As a generic example, it is shown that near a partially reflecting plane there is a sharp transition
from two-atom superradiance to single-atom emission as the atomic positions are varied.

DOI: 10.1103/PhysRevA.70.053823 PACS nuniber42.50.Fx, 11.80.La, 34.20.Cf

I. INTRODUCTION known since the pioneering work by DicKé5], resonant
gtoms in each other’s neighborhood decay cooperatively. De-

di -Irh? §pontz_ineous-e21|53|or(1j rate oft_anlatom (;Jrr]epends_ on} %nding on the many-atom state, the atoms decay faster than
lelectric environmen(l,2] and in particular on the precise  gingie atom up till twice the single-atom rauperradi-

gosmon of the atc_)m_|f the med:urrt: IS mSomog%ne@asS]. ance or decay slower or not at alsubradiance Lifetime
pontaneous emission can only be un e_rstoo q“af‘t“m m@ﬁanges of individual atom pairs as a function of their dis-
chanically, but the classical Green function determines th ance were measured only recenfg]; for two Ba® ions
emission rate. In particular, the emission rate is proportional, .+ emit at a wavelength of 493 nm, and for well-defined

) 7 ; : rseparations‘yR| around 1.5um, subradiant and superradiant
the atomic position. The dipole-angle average of the eMiSfitatime effects of less than +2% were observed.

sion rate is also known as the local optical density of states Superradiance occurs for the so-called Dicke states that

[9]'| d dv the infl f th di hhave a zero expectation value of the total dipole moment
n order to study the influence of the medium on much g 1y 4150 for atomic product states with a nonzero dipole
more than just single-atom spontaneous-emission rates,

hi h I | X h . oment[17,18. Superradiance also occurs for classical di-
this paper a rat er general multip e—sfcat.tenpg theory Is Selpes Itis a general phenomenon also exhibited in acoustics
up. It is based on “macroscopic quantization” theories of th

P ) . Dy nearby identical tuning forks, or by strings in a piano
electromagnetic field in inhomogeneous lossless dlelectrlcshg] These systems have in common that the at@nos-
see for examplg5,10-13. Microscopic treatments dmac- 41015 interact with a field that is influenced by the radia-
roscopically homogeneoydielectrics in quantum electrody-

) . _ tion reactions of all nearby atoms together.
hamics can be found ifi3,14 but W.'" not be used here. An Cooperative effects of resonant atoms will be influenced

be defined he el o £ th By their dielectric environment. In this paper the influence of
can be defined as the elementary excitations of the trug nondispersive and lossless inhomogeneous dielectric on

modes of the dielectric. Corresponding mode functions argheqded or nearby resonant atoms is studied. Quantum
the (classica) harmonic solutions of the wave equation. ,6qvis ysed both to describe the light and the atoms. As we
Emission rates Of. an atom not only change due to th‘?ocus on the effects of the inhomogeneous dielectric, the
nonresonant dlelectnc_enwronment, but _a_lso due to the Pré€Sitoms are modeled simply as quantum harmonic oscillators
ence of other atoms with the same transition frequency. As 't their ground states or first excited states, with fixed dipole

orientations. To be sure, in choosing this model we neglect

optical saturation effects of the atoms. The dielectric is de-

*Electronic address:  Martijn.Wubs@physik.uni-augsburg.de;scribed macroscopically in terms of a real-valued relative
URL: http://tnweb.tn.utwente.nl/cops/ dielectric functione(r), the form of which will be left arbi-
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trary. The precise measurement of two-atom superradiance imse in quantum optics of inhomogeneous dielectrics. Mul-
free space as a function of distance is a fundamental test faiple light scattering will be described in terms of Green
quantum electrodynamicgl6]. The effects calculated here functions of the medium. The emphasis of the paper will be
are a test for macroscopic quantization theories for inhomogn formalism, but it ends with an application to superradi-
geneous dielectrics. ance in a model dielectric.

_Like single-atom emissiof19], two-atom superradiance  The paper has the following structure: in Sec. Il the point-
will be modified in the close vicinity of a mirror, or inside an gcattering model for interacting guest atoms is introduced.
optical cavity[20]. Strong modifications of superradiance are Properties of several types of Green functions of the medium

also predicted for photonic crystals, dielectrics with periodic, e giscussed in Sec. IIl. Section IV discusses medium-
refractive-index variations on the scale of the wavelength of,4.,ced modifications of single-atom properties such as

light [21-23. Large effects are predicted in the SO'Ca"edspontaneous-emission rates and elastic scattering. The gener-

isotropic model for a photonic crystal, which is really a toy _\.___. - U _
model in the sense that all local and orientational inhomogegl'zat'on toa f[nlte number OFNOSt Atoms Is d|scussgd in Sec.
. The formalism is applied to two-atom superradiance in

neities of the electromagnetic field are neglected. In a reag ) ; : .
photonic crystal, two-atom superradiance is expected to se REC- Vi, in particular to superrgdlance neara part|ally reflect-
sitively depend on the coordinates of both atoms. The preseffid Plane in Sec. Vil. Conclusions are drawn in Sec. VIIl.
formalism is valid for an arbitrary real dielectric function and

encompasses the interesting special cases just mentioned. Il. ATOMS AS POINT SOURCES
Atoms that exhibit superradiance interact strongly enough AND AS POINT SCATTERERS

to share and exchange the optical excitation before emission.

The more common and better studied situation for resonant A. The Hamiltonian

atoms in a dielectric is that the interaction between the atoms Consider an inhomogeneous dielectric with relative di-
is weak compared to interactions with baths that the indiglectric functione(r) with a finite numberN of embedded

vidual atoms have. Then the optical excitations are transpeytral atoms. The dipole Hamiltonian for this system is the
ferred irreversibly from donor to acceptor atoms via a pro-sym of a field part, an atomic part, and an interaction part
cess called “resonance energy transfer,” as described byetween field and atoms. More precisely, the Hamiltonian

Forster theory[24] and its modern generalization25].  can be found after canonical quantizatjdd, 12 to have the
Resonance energy transfer is influenced by the dielectric €Rorm 7 =7+ ,+H,r, with

vironment. For example, calculations show that two-atom

interactions can be strongly influenced by an optical micro- He= 2 ﬁw)\a;[ax: (1a)
cavity [26—-29, since the cavity modes with eigenfrequencies A

close or equal to the atomic transition frequency play a

dominant role. Indeed, experiments have shown that the in- N

teratomic (dipole-dipolg interaction is increased when the Hpo= > thb;rnbm, (1b)
atoms are placed in a cavity at positions where resonant op- m=1

tical modes have their maxim&9]. In another interesting

experiment, Forster excitation transfer is found to scale lin- N

early with the local optical density of states at the donor Har=— 2 M- F(Ry) = 2 (b + bl Gy + Grmdh) -

position[30]. Although we focus on superradiance, the for- m=1 mA

malism in the present work is quite general and can also be (10

used as a quantum electrodynamical foundation for the study . : . . .

of energy transfer processes in inhomogeneous media. R lotice that there is no direct interaction term between neutral

cent progress in this direction can be found1,32. atoms. Ina mlnlmal—couplmg Hamlltonlap, thgre yvould have
Often in quantum optics an “all-matter’ picture is em- been such a direct coupling term. The situation is analogous

ployed, where the dynamics of the electromagnetic field id0 th'e frge-space cas[@3,4a. The field part7e O.f the

integrated out, for example in the optical Bloch equationsHam'lton'ar? Is a sungor mteg_ra} over harmonic oscillators

[17,33. Here instead we treat spontaneous emission and s°/"esPonding to the harmonic solutiofiue modes) f, of

perradiance in an “all-light' picture, which is convenient the Maxwell equations for the inhomogeneous dielectric in

when studying the effect of the dielectric. A multiple- the absence of the atoms:

scattering theory is set up in which the atoms show up both -V X V X f,(r) +(r)(wy/c)%,(r) = 0. (2)

as sources and as scatterers of light. It is known that super-

radiance can be viewed as caused by multiple-scattering if=0r @) # 0, these modes are generalized transverse, which

teractions[34—3§. Light scattered off a collection of atoms means tha¥’-[(r)f,(r)]=0. Their orthonormality condition

will show multiatom resonances and cooperative effects, alsegads fdre(r)f,(r) -f,.(r)=48,,,, where * denotes complex

due to multiple scattering. In quantum scattering theory sucleonjugation. The modes are complete, in other words they

resonances appear as well and sometimes are called “proform a basis for the subspace of generalized transverse func-

imity resonances]37,3§. tions. For free spacgs(r)=1] the f, are the well-known
The concept of a point scatterer proved very fruitful in thetransverse plane-wave modes.

study of multiple-scattering of classical light in free space In the atomic Hamiltoniart{,, the atomic transition fre-

[39-41]. Here, the point-scattering formalism will be put to quencies(},,, and transition dipole momenig,, may be all
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different, either because the guest atoms are of different spelielectric in the presence of tiNeguest atoms, by integrating
cies or because identical atoms feel a different environmenbut the atomic dynamics. Heisenberg’'s equation of motion
The frequencie$),, are assumed real, which means that nondeads to the following equations of motion for the field op-
radiative broadening is neglected. The atoms are very simplgrators:

described as harmonic oscillators with frequendigs This

is a good approximation within a certain frequency range and a =—ima, - (i/h)z g’;m(bm + b;), (7a)

as long as saturation effects of the upper atomic state can be m

neglected. The atomic transition dipole momentsare as-

sumed to be real-valued and to have fixed orientations. This St .

assumption is better for molecules or quantum dots in a solid a{ = ""Aa{ + (i) 2 Grm(rm + bL)' (7b)
surrounding than for atoms in the gas phase. For conve- "

nience, the name “atoms” will be used for the guests in thgThe dot denotes the time derivative; explicit time depen-
dielectric. The operatorb](t) create atomic excitations by dgence of the operators is henceforth dropp@tie field op-
annihilating an atom in the ground state while at the samerators are coupled to the atomic operators and the operators

time creating the atom in the excited state. of atomm satisfy the equations

The total displacement fiel®(r,t) is equal to the dis-
placement fielckoe(r)E(r ,t) of the inhomogeneous medium b= = iQu b= (/3) > (G, + gl (8a)
plus the sum>,P,(r,t) of the polarization fields produced " e ]\ G+ i)

by the guest atoms. In the dipole approximation, these polar-
ization fields have the form

bl =iQnbh + (/1) X (G + Grml) - (8D)
Por(r 1) = 8(r = Ry)Poo(t) = 81 = R st bn() + (D], X

©) Now take the Laplace transfortor one-sided Fourier trans-
In the dipole interaction terrt(, of the Hamiltonian, a field ~form) of the equations of motion. The transform will have
calledF was introduced that is an abbreviation of the argument w, for exampleby,(w) = [gdt €“'by(t). Here
- and in the following the frequency is assumed to contain
F(r,t) = D(r,t)/[sos(r)]. (4 an infinitesimally small positive imaginary part so that the
Atomic dipoles couple to this field(r ,t) [11,12. It is equal  transform is we]l-defined. The equations are algebraic after
to the electric field operatdg(r ,t) everywhere, except at the the transformation. _
positionsR,, of the guests, since the guest dipoles couple to  Als0 in Fourier language, the equations for the frequency-
fields in which their own polarization fields are included. For dependent atomic operators become
free space this self-interaction in the dipole coupling is _ A
known [42]. The mode expansion of the fieklr,t) has a iby(t=0) h iy
; - The. P > fefelr, b(@) = + 2 (G () + G\ plm(@)],
simple form, being the sum of a positive-frequency part 0=0n  o-0y7
F™)(r,t) containing only annihilation operators and its Her- 9
-y - (_) ( @
mitian conjugate="(r ,t), where

: fhw ibl(t=0)  #7?
FO(r,b) = —a,(Of,(r). 5 t ()= —m - D - al
(r,v I% 20 a(Hf\(r) (5) b (w) 0t wr0 2 [Ghman (@) + Gy p@xm(@)].
In the absence of the atoms, the time dependence of the (9b)

annihilation operators in Eq5) would be harmonic and o ) ) ]
F(r,t) would be equal to the electric fieE?(r ,t). Here and In obtaining these equations, it was assumed that at time
below, the superscrigd) denotes the absence of guest atomszfogo’ the annihilation operatora,(t) coincide with the
in the inhomogeneous dielectric. For convenience, coupling, (1), the operators in the absence of the guest atoms. The
constants between atomand optical moda in Eq.(1c) are  latter operators have the simple harmonic time dependence

defined as a;o)(t)+iwxa(x°)(t):0, the transform of which becomes(w
P —wk)ago)(w)Za;O)(tZO) after a partial integration. Notice that
Ohm=—11 ’—)‘/um f,(Rpy). (6) b (w) and bL(w) in Eq. (9) are defined as the transforms of
289 b(t) and bﬁ](t), respectively. The time-dependent operators

Notice that the coupling constargs,, are zero forlongitu- ~ are  Hermitian  conjugates (bj,(t) =[b,(H]), but the
dinal) modes corresponding @, =0. It is by a convenient frequency-dependent operators are () # [orm()]").
choice of gauge that the longitudinal modes are decoupled The right-hand sides of Eq$9a) and (9b) will now be

from the atoms in the Hamiltoniafi). used to replach,(w) andb/ (o) in the Laplace transforms of
o . . . Egs.(7a) and(7b) for the field operators. In doing this, the
B. Derivation of Lippmann-Schwinger equation atomic dynamics is integrated out. One obtains for the

The goal of this section is to derive a Lippmann- frequency-dependent annihilation and creation operators of
Schwinger equation for the field inside the inhomogeneous the electromagnetic field

053823-3
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AM

o izl . | bn(0) bl (0) The optical potential®/(w) produced by the atoms are
ay\(w) =a, (w) + o }\% w-0O, s 0, dyadics equal tqi,Vi,(w) iy, Where

2
52 o 2g. Q) ) E(Mm ) 204,
+ > P D G (©) + Gy ()] Vilo) =\ o w202 ) (13

2
R N e O

Both the sources and the potentials have resonances at fre-
guencies £),,,. PotentialsV,(w) are sometimes rewritten as

(10a

_— t -(w/c)? times a “bare polarizability’ag(w) [40]. In the
aI(w) - ago)T( ) - LE gm{bm_(o) + bm_(o)} present case, the bare polarizabilities are (eatept exactly
otwoyn 0=Qn 0+QOy on resonanceand they change sign when going through

52 2 their resonances d2,, the resonances are infinitely sharp

- G2 Mgy may (@) + 0., al(w)]. because all possible nonradiative decay processes are ne-
oto w® - QZ M glected; the polarizability is called “bare” because it does not
' (10b) (and should nogt contain radiative broadening of its reso-
nance(but see Sec. Y

The optical modes are no longer independent because of the The last undefined factor in E@L1) is the dyadic quantity
interaction with the atoms. The three terms in the right-hand< which is given by
sides of Eqs(10g and(10b) can be related to three reasons (r)f (r') ?
why there can be light in mode first, because there is light K(r,r',w)=c2> 222 X
in the undisturbed mode that has not “seen” the atom; sec- N (0”= wk)
ondly, because the atom can emit light into the madéhe
third term describes transitions of light in and out of the
mode to and from moded.’, due to scattering off one of
the guest atoms. Since the relatiaid€) are implicit rather
than explicit solutions for the operators, the identification o
terms in the equations with scattering and emission process
can only be approximate.

The resultg10) for the creation and annihilation operators
can be directly used with E@5) to find the following equa-
tion for the fieldF

(14)

Usually, in a Lippmann-Schwinger equation one finds the
Green function(called G) of a medium where we now find

the dyadicK. Interestingly,K turns out to be different from

fG even for free space, as will be studied in Sec. Ill. All the
éements of Eq(11) have now been defined.

Another important field operator for the medium is the
vector potentialA. The magnetic fiel® equalsV X A. In the
canonical quantization theoriegl1,12 upon which our
Hamiltonian(1) is based, the generalized Coulomb gauge is
chosen, which means th& is generalized transverse. Its

F(r,w) =E9(r,w) (11a  expansion in terms of the normal modes is given below. With
Eq. (10) this leads to
+ 2 KRy o) - Sp(w) (11b) h .
m Are) =2 /5 ——a()h() + (@]
A €W\
+ 2K, Ry ) - V(@) - F(Rpy, ). (119 (159
m
This is the central result of this paper. It is an exact =AO(r, w)+—2 G'(r,Ry, ) - Sp(w)
Lippmann-Schwinger equation and it describes the resonant 1o m
scattering off and emission by guest atoms inside an inho- 1
mogeneous dielectric, both for strong and for weak atom- +=> G'(r, Ry o) - V() - F(Ry, ).
field interactions. The equation has an undisturbed term lw
(118, a source terngllb), and a scattering terrfilo). (15b)

The elements of Eq(1ll) must still be explained. The
operatorE©(r ,w) is the electric field in the absence of the Analogously to Eq(11), an undisturbed term, a source term
atoms, with both the positive and negative frequency partsa”d a scattering term can be identified for the vector poten-
The atomic source operato®s,(w) are vectors that have the tial.
form g, Sn(w), where f,, denotes the unit vector in the di- A difference between Eq(1l) for the field F and Eq.

rection of the atomic dipole momepi,, and (15b) for A is that only the former is a Lippmann-Schwinger
equation and thad immediately follows from the solution of
_ imeZ){ bn(0) bl (0)

F, rather tharvice versaln a minimal-coupling formalism,
£oC w-0, 0+Q,] (12 one would find a Lippmann-Schwinger equation for the vec-

tor potential instead. Another important difference between
Notice thatS,, features the atomic creation and annihilationthe equations for the two fields is that in EG5b) for A the
operators at the initial time zero: in quantum optics, thegeneralized transverse Green functi@l appears, rather
atomic variables cannot be completely integrated out in athan the dyadiK of Eq. (11). Definitions of and relations
“all-light” picture. betweenG,G", andK will be studied shortly, in Sec. IIl.

Swlw) = (

053823-4
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Often, Lippmann-Schwinger equations are derived in “all-+ 8-= 1. We calledG" the longitudinal Green function, but it
light” formalisms that start with a given optical potential as ais not self-evident that for every inhomogeneous dielectric
perturbation. Here instead, the approach started one lev@' is longitudinal indeed. Proofs thgdr'G(r,r’)-XT(r")

deeper and the optical potentid}, is output rather than in-
put. An important feature in Eq11) is that the atoms are not
only point scatterergpotentialg, but also point sources for

=0 and also thafdr X T(r)-G(r,r’)=0 can be found with
the help of Eqs(32a and (32b) of Ref. [12], respectively.
Then, sinceGh is longitudinal,G in Eq.(18) can be replaced

light. Both appear as two sides of the same coin in one equay G'. Hence the projection of Eq16) leads to a unique
tion. Solutions for the equation will be discussed shortly indefining equation foG'.

Sec. |V for one atom and in Sec. V for several atoms.

Ill. GREEN FUNCTIONS OF THE MEDIUM

The dyadic quantitie& andGT will now be related to the
Green function of the medium. Théull) Green tensor

From Egs.(2) and (18), it follows that the generalized
transverse Green tensG’ has the mode expansion

G'(r,r',w)=c?2, AL

2 (wtin—ol (20

In this manifestly generalized transverse foi@Y, appeared

G(r,r',») of an inhomogeneous medium characterized byin Eq. (15b) for the vector potential. In the denominator of

the dielectric functiore(r) is the solution of the wave equa-

tion

-V XV XG(r,r',w+ear)(wc)?G(r,r',w)=8r -r")l,
(16)

where the right-hand side is the ordinary Dirac delta functio

times the unit tensor.

For a discussion o67, it is useful to first introduce the
concept of a generalized transverse delta func{i®i?).

(For comparison, Green and delta functions of a homoge=

neous medium are given in the AppendgliA generalized
transverse delta functiodl (a distribution can be defined in
terms of the mode functiorfg [see Eq(2)]:

oi(r,r’) = 2 Fi (DA )er). (17)
A

Now &! has the projection propertydr, El(rl,r)-XT(rl)
=XT(r) for all (ordinary) transverse vector field$™. The bar

in EI denotes the transpose. The same projection can be ag
plied to Eq.(16). In doing so, the transverse double-curl term
is projected onto itself. The generalized transverse Gree

function GT can now be defined such thatr)G'(r,r’, w)
equals the projectionfdrlél(rl,r)-[s(rl)G(rl,r’)]. The
projection then leads to the following equation faf:

—V X V XG0 +er)(w0)GT(r ' w)=a(r).
(18)

Notice thatG rather thanG' appears in the first term. Fur-
thermore, a longitudinal Green functi@t can be defined as
G-G'. By taking the difference of Eq16) and Eq.(18) one
can see thaG' has the form

;[ﬁ(r—r’)l—g(r’,r)] (199

L " —
G = i @o?

! SL(r'r),

= () (wlc)2”

In equality (19b) the generalized longitudinal delta function

(19b)

Eq. (20) we have for once made explicit the positive and
infinitesimally small imaginary part of the frequenay,
through the terni». With the positive sign of the imaginary
part, Eq.(20) is the causal Green function which trans-
formed back to the time-domain gives a Green function
G'(r,r’,t—tg) which is nonzero only for positive time dif-

nferences(t—to).

We are now in the position to rewrite and interpret the
dyadic K [see Eq.(14)] that appears in the Lippmann-
Schwinger equatioll) for the field F:

INGIN(D

2 2

- o?

K(r,r',w)=c2> = (clw)?X fA(r)f (r")
A A

(O]

1 J—
————=a8.(r',r).
e(r)(wlc)? (1)
It consists of the generalized transverse Green fun¢2on
and a term proportional to the transpose of the generalized

ansverse delta functiorﬁl (17). Both terms are medium-
ependent. Note thad¢ is generalized transverse in its vari-
bler. If only because of this propertl is not equal to the
otal Green functior(16). Nevertheless, the definitiof19b)

of the longitudinal Green function can be used to rewkite
as

=G'(r,r',w) - (21)

K(r,r',w)=G(r,r',w)— Srr=rl. (22

1
e(r)(wlc)?
According to this identity, the dyadik differs from the full
Green function of the medium only when its two position
arguments andr’ coincide. Although different fron®, the
quantity K will also be called a Green function. The occur-
rence ofK rather thanG in the Lippmann-Schwinger equa-
tion will be discussed further in the Appendix, where the
volume-integrated electric field around an atom is calculated.

IV. SINGLE-ATOM PROPERTIES ALTERED
BY THE MEDIUM
A. Solution of the LS equation

An atom in a group of atoms in an inhomogeneous dielec-

8- was defined as the difference between the ordinary Diratric will have different properties as compared to free space,

and the generalized transverse delta function, so #lat

because of the dielectric and because of the other atoms. In
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this section the effect of the medium on the individual atoms K(r,R,0) - S(w)

will be considered. The next and major step, in Sec. V, will Fsourcd !, @) = 1- 7 KRR.0 V(@) (28)
be to study some effects that the medium-modified atoms can © @) PV

have on each other. with S(w) as defined in Eq12). The time dependence of the

Assume that in the dielectric there is only one guest atonzource field at the position due to the presence of the
present with dipole momenk and transition frequenc§).  source atR follows from the inverse Laplace transform of
The effect of the medium on the scattering and emissiorEq. (28),
properties of the atom can be found by solving Etjl) L
exactly by successive iterations Feoucdl D) = - J do €9F {1 0). (29)

F=[E®+K-S]+K -V -[EQ+K -S] e
+K-V-K-V-[EQ+K-S]+---. (23) This integral cannot be evaluated further Witho_ut the explicit
knowledge of the Green functidi. The source field decays

In this equationK andV are classical quantities, whereas in time due to spontaneous emission by the atom. The decay
F,E©, andS are quantum mechanical operators. The infiniterate can be found by multiplying numerator and denominator
series of multiple-scattering terms can be summed to give in Eq. (28) by (0?>-Q?) and by realizing that the zeras
=0,(Q) of w?-02-20X(w) with
F(r,w)= E(O)(raw) + Fsca(raw) + Fsourc&raw)r (24)

X(w) = fr-K(R,R,0) - u u?w? (heqC? 30
where, as beforeEO(r,w) is the electric-field operator of (@) = p-K( ©) - plpol(heoc)] (30)

the inhomogeneous medium in the absence of the guest aare the frequency poles of the source field. Until now, our
oms. solution is exact. At this point we make a pole approxima-
The operatoiF..,(r , ) in Eq. (24) describes light that is tion, which is only valid if the atom-field coupling is weak.
scattered by the guest atom at positRmnd it has the form The pole approximation giveQ,=Q+X((2), with X(Q2) the
difference between the dressed resonance frequénf)

Feeal @) =K(r,R,0) - T(0) - EV(R, ), (25 and the bare atomic resonance frequeficiThe exponential
with the single-atom T-matrix defined by (amplitudg spontaneous-decay rate is
T(w)= &T(w)h= 2 V(w) A I'/2=-1mX(Q). (31
()= pT(w) = p 1-i-KR,R,w) - itV(w) #- The decay rate of the intensity of the fieldlis It is nonne-

(26) gative by definition oK in Eq. (14). The delta function term

in K (22) and the longitudinal Green functid@®-(R,R, ) in
The T-matrix is sometimes written agw/c)? times a dy- EQ. (198 are real quantities, so thatis proportional to the
namical polarizability «(w) [compare with Eq.(13)] and lmag!naryTpart of only the gf:-nerahzed transverse Green
both depend on the atomic position inside the inhomogefunctionG'. The property thaG- does not contribute to the
neous dielectric. The expectation value of the scattered fiel§Pontaneous-emission rate is a generalization of the well-
(25) only depends on the initial quantum state of the lightknown result for homogeneous dielectrigg3] and it only
(through the termE©). Unlike for a two-level atom, the h_o_lds for nonabsorbing dlelectrlc? Using the mode compo-
light-scattering properties of a harmonic-oscillator atom doSition — Eq. (202) of G, we find T
not depend on the atomic excitation. The scattering process™ (e Zxlp-fi ()] wﬁ@y—wx), the same expression that
can be read from right to left in the right-hand side of Eq.One also finds from Fermi's golden rulg]. The decay rate
(25): light E© that has not yet seen the atom scatters off th&lepends both on the atom’s position and on its orientation
atom (as described b¥), and the scattered part of the light inside the inhomogeneous dielectric. For free space, the

propagates through the dielectric as describedby imaginary part ong(R,R,Q) is equal to €)/(6mc)l [see
Finally, there is in Eq(24) the source field Eq. (A2a)]. This gives the familiar free-space spontaneous-
decay ratd o= u?Q3/ (3mwheqcd).
Fsourcdl ;) =K(r,R, 0) - S(w) The dressed resonance frequer®y can be written as
+K(\R,o) - T(w) - K(R,R,®) - S(). Q+A'(Q)-iI'(Q))/2. Apart from a decay rate there is a fre-

quency shiftA’ that is equal to RX({2). For two reasons)’
is infinitely large even for free space. First, the delta function

i o .
Expectation values of the source fidig,,.conly depend on €M ar —R)I/[e(R)(w/c)*] in Eq.(22) diverges whem and

the initial atomic state. Notice that the same T-matrix thatR are equal. This self-interaction term is medium-dependent
shows up in the scattered figl25) also appears in the source through the factor(R), but here and in the following we
field (27). Light emitted by an atomic point source will be assume that guest atoms are electronically well separated

studied further in Sec. IV B and scattered light in Sec. IV c.from the dielectric medium, so that an empty-cavity model
applies where the relative dielectric function is equal to unity

at the position of the guest atofi2]. The second reason
why A’ diverges is well known for free spaci(r,R,w)
The source field27) can be rewritten as diverges wherr approache®R [see Eqs(A2a) and (A2b)].

(27)

B. Light emitted by a point source
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By a procedure called mass renormalization, the combinegrocess that one could call antiresonance fluorescence. In a
radiative shift in free space becomes finite, see for exampleotating-wave approximation this process would disappear.
[44]. From now on we can assume tHatis the observable After neglecting this third term, all the-poles in the integral
atomic frequency in free space; inside a dielectric, the atomi¢33) have positive real parts, so that E3) can be called
frequency shifts by an amountthat is given by the real part the positive-frequency part of the fiekel 4

of [X(w)=X,(Q)], or in terms of the Green functions Now consider the second term in E§3) in more detail.
22 In the resonance fluorescence process the guest atom is ex-
A=j-RAG(R,R,Q) - Go(R,R, V)] _ﬁ( M Qz) _ cited by light of frgquencyup, after whiph }he atomic source
heoC decays exponentially due to light emission at frequefigy

(32) (In contrast, elastically scattered light oscillates with the
_ _ N _ _ pump frequencyw,.) The fluorescent light has the same
The shift depends on the atomic position and dipole orientaposition-dependent emission rat€$R,Q) (31) and line
tion. Notice that the full Green function is needed to deter'shifts A(R,Q) (32) as found for Spontaneous emission be-
mine the line shift, whereas for the decay rate it sufficed tofore, A difference between the source-field of E28) and
know G, . _ . the fluorescent light in Eq33) is that the latter also contains
The position-dependent radiative shifts are a mechanisithe information how well the pump light that comes in via
of inhomogeneous broadening of the detected light. Elecpode\=p can excite the atom, in the factéy(0) - ie. This
tronic shifts usually dominate inhomogeneous broadeninggitference is especially important for inhomogeneous dielec-
Experimentally it will be hard to single out radiative shif®  {rics where atoms will be excited easier here than there. And
photonic effecfrom electronic line shift¢due to changes in  jqeed, it is through the process of resonance fluorescence
the atomic wave functions inside the medium that lifetimes of atoms in dielectric media are usually mea-
sured.
In a resonance fluorescence experiment, a light pulse or
. wave packet passes the atom during a timén expression
In the scattered field of Eq25), the atom appears as a (33), the intensity of resonantly emitted light depends on the
point scatterer with an internal resonance in the optical pogxpectation value with respect to the quantum state of light
tential V(w) and a corresponding resonance in the T-matrix ingt time t=0. This can only be a valid description of the
Eq. (26). The scattered field has frequency poles in theprocess ifT<I'"%, in other words, if the wave packet is so
T-matrix (just like the source field but it also has poles for short that it “prepares percussionally the excited stgi5],
every optical mode frequencyus; (unlike the source field  p. 97 of the atom at time=0. This is typically the case,
The time-dependence of the scattered field can be understoegen if the medium broadens the excitation pulse: excitation
by separating the frequency poléstraightforward, but not pulses last picoseconds and lifetimes lie in the nanosecond
spelled out heng again followed by an inverse Laplace regime.
transformation. In the following, place the atom in the origin.
For the part ofF, featuring the annihilation operators, one

C. Light scattered by a point scatterer

finds V. SEVERAL ATOMS AS POINT SOURCES
" _ MZ \/Tw)\ . A AND SCATTERERS
Fecalr) = % 27heqC? 2_80a)\ Of(0) - A. Solution of the LS equation

o In Sec. IV it was found how scattering by and emission

X f dw w?e K (r,0,0) - it rates of single atoms are influenced by their dielectric sur-

—o roundings. In the present section it is studied how the

20) 1 medium-modified atoms can influence each other. The
{— T o atomic wave functions are assumed not to overlap each other

Q+A) -y + T4~ 0= oy and to be unaffected by the dielectric. The atomic positions
QI(Q+A) 1 can be arbitrary, so we can decide to choose the atoms on a

. ; line [46] or on a lattice[47] or at random positions. The
Q+A-w-iT20-Q-A+il/2 general method to solve the Lippmann-Schwinger equation
QIQ+A) 1 (11) in this more complicated situation is outlined here. In
Q+A+w, +iTRw+Q+A+iT/2[ (33 sec. Vi, the formalism will be used to study two-atom su-
perradiance inside an inhomogeneous dielectric medium.
The negative-frequency pa”) of the field equal§F™]". For one atom, the Lippmann-Schwinger equatibh was
The three terms between curly brackets in E2B) corre-  solved by summing a series to all orders of the atomic po-
spond to different optical processes. The first term describetential. In the present many-atom case all atomic transition
elastic light scattering by the guest atom inside the inhomodipole moments, orientations, and frequencies are allowed to
geneous dielectric; the second term has an exponentially dée different so that also all optical potentidgsare different.
caying time dependence and corresponds to resonance flubhe LS equation will now be solved by efficiently summing
rescence; finally, the third term is an exponentially decayinga somewhat more complicated series. Use the abbreviations
nonresonant term, corresponding to an utterly improbabl&=F(r ,w), Fr=F(R,, w), Kn=K(r,Ry,w), Kinn

053823-7



WUBS, SUTTORP, AND LAGENDIJK

=K(Rm, Ry, ®), and introduce FY=EO(r,w)
+3K(r, Ry, ) -Syw). Also, Fgl) is shorthand foFY(R,,).
By iteration it follows that the field F-FY) of Eq. (11)
becomes

N N
2 Ko Vo B+ 2 Ky Vi K Vi Y
n=1 m,n=1
N
+ 2 KV K Vp - Kpn Vi - F+ oo

m,p,n=1

(34a)

This can conveniently be rewritten in terms of the single-

atom T-matrices of E(26) as

N N
DKy Ty FY+ > Ky T Kl To - FP
n=1 mn=1
N
+ > Km'Tm'Kr,np'Tp'Kém'Tn'Fqu)"'"' i
m,p,n=1

(34b)

Here the tensoK;,, is defined as(1-6&,)Ky, Which by
virtue of Eq.(22) is equal t0G,,,=(1~-6nn)Gmn A single-

PHYSICAL REVIEW A70, 053823(2004)

N
Feca T @)= > K(r,Rp) - TN(w) -EOR,,w).

m,n=1
(38)

This is a generalization of the single-atom result of Exp).

It describes elastic scattering as well as resonance fluores-
cence offN atoms in an inhomogeneous medium. The expec-
tation value ofF¢.,;depends on the initial quantum state of
light only. Similarly, for the N-atom source-field that only
depends on the initial atomic state, we find

N

Fsourcdl @) = 2 K(N)(r1Rm1 o) - Sp(w),

m=1

(39)

which generalizes Eq27). Here,KN is a Green function of
the inhomogeneous dielectric including tNeatoms:

KN, r', ) =K(r,r', o)
N
+ 2 K(r!Rm!w) Tl('nNr)](w) ) K(Rn!r,yw)'
mn=1

(40)

For r and r’ different from one of the positiongR,,
KN(r,r’, ) is equal to what one would call the total Green
function GN of both the dielectric and its guests. The solu-

atom T-matrix already sums up all multiple potential- tion (39) shows that the source-field™(r,Ry,, ®)-Sy(w)
scattering off a single atom, which explains that neighboringhat emanates from atomm is influenced by the positions,
T-matrices in terms of this series belong to different atomsorientations, dipole moments and resonance frequencies of
The equivalence of Eqg34a and (34b) can be seen by the (N-1) other atoms. Notice that the samd-atom
expanding single-atom T-matrices in terms of single-atonT-matrix describes théN-atom source fields and scattered

potentials. Now every higher-order term in E§4b) can be

fields. The two-atom source field will be studied in Sec. VL.

constructed from the previous-order term by inserting into

the latter theN < N matrix with (i, j)-elementsi; -G, - T; - i;.

B. Interatomic interactions

By summing the geometric series of matrices and dropping

the abbreviations, it follows that

N
F(r.o)=FY(r,w) + 2 K(r,Rpo) Ti(o) - FOR, o),
m,n=1
(35)
with the N-atom T-matrix
Tin(©) = B T(®) ftn = ftm T @)M (@) ity (36)

The NX N matrix M (w) is defined as

Mij(w) = 6; = (1 - )i - G(R,Rj,w) - 4Tj(w). (37)

Equations(36) and (37) neatly sum up infinitely many scat-

tering events which are not described @y Light propaga-

In the results of Sec. V A, interatomic interactions can be
identified. Before doing that, we briefly mention possible
interatomic interactions that we already neglected or that
simply do not occur in our theory. In a minimal-coupling
formalism there would be a direct atom-atom interaction in
the Hamiltonian. In a multipole formalism, the only direct
interaction between neutral atoms is an interatomic polariza-
tion energy[42]. Classically, this interaction is zero unless
the smallest spheres containing the atomic charges have non-
zero overlap42]. Quantum mechanically, this “contact en-
ergy” is negligible unless the interatomic distance is of the
order of the size of the atoms such that wave functions over-
lap. We assumed that the atoms were further apart. Together
with the fact that atoms are much smaller than the wave-
length of light, this allows us to make the dipole approxima-
tion in which atoms are considered as point dipoles. There-
fore, direct interactions between the atoms are absent in the

tion in between the scattering off one atom and the next ondipole Hamiltonian Eq(1). Our approximations make that

is described byG and need not be rectilinear, sinGeis the
Green function of the inhomogeneous medium.
As before, the total fieldF consists of the parE© that

the only interatomic interactions that we can find are retarded
dipole-dipole interactions, mediated by the electromagnetic
field.

has not seen the atoms, a scattered part and a source-fieldIndeed, in Sec. V A interatomic interactions showed up in
part. The field operator that describes the scattering of lighthe N-atom T-matrix as terms proportional to the causal

by the N-atom system has the form

Green tensor of the medium. For two noncoinciding posi-
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tions R; and R,, the interaction(with dimension: [fre-  generalized transverse functions and a longitudinal subspace.

quency) has the form The completeness relation in the entire space reads
5 SR )e(r)+2,0,(r)g,(re(r)=8r —r’)l, with | the
3= IRy,Ry0) = 222 1 G(RL R 0) - i unit tensor. It follows that forr #r’, one can replace
fieqC S\ (Of (r") in Eq. (42b) by minus the sunE,q,(r)q,(r’).
Ry . . wi Incidentally, the longitudinal mod_eq,,_of the medium are
= h—SO% a1 - f(RDF(R2) 'Mzm- (41)  different from the free-space longitudinal modes, because of

their different orthogonality relations‘drs(r)qy(r)-q:,(r)

For the latter identity, Eqs(14) and (22) were used. Only =9,,.
after making a pole approximation in Sec. VI will it become

fully clear why we identify precisely this expression as theVI_ TWO-ATOM SUPERRADIANCE IN INHOMOGENEOUS

dipole-dipole interaction. Modes with eigenfrequencies MEDIUM
=0 were absent in the dipole interactighc) and conse-
quently are absent in the dipole-dipole interact{d). The general results of Sec. V will now be applied to two

The Green functiorG can be written as the sum of the identical atoms positioned in an inhomogeneous dielectric.
generalized transverse Green funct®h and a longitudinal Assume that the two atoms have identical electronic transi-
Green functiorG" [recall Eqs(19)—(22)]. The dipole-dipole tion frequencies) and dipole momentg.=|ul; their dipole
interaction can be split into two analogous parts. The genemrientationsg, and g, need not be identical. The source
alized transverse part is field of this two-atom system igsee Eq(39)]

MlﬂszE RN GHINGO™ Fsourcd, @) =K@(r,R1,0) - Si(0) + K2 (r,R,, w) - Sy(w).
heg % o’ - of ' (43

Jgtrans(Rlv Ry, ) =

(428  The goal is now to calculate the Green functiéff of the

; “ ; ; - ; dielectric including the guest atoms, in terms of the proper-
It is also called the “resonant dipole-dipole interactiqot . . S
P P a ties of the medium and of the individual atoms.

RDDI). The strongest contribution to this interaction comes . ) :

rom te modes, wih ogenfequencie, neare, which  ASCOTTS 0 EA(10, e Sreen ol s wnow,
lains th jective “ . Noti i . - ; N .

explains the adjective “resonant.” Notice thigkansis zero by inverting the 2<2 matrix M (37), in which the single-

when o is zero. The other part is the longitudinal dipole- atom T-matrices occur that are given in E@6) and the
dipole interactionong that has the mode expansion Green functiorK of the dielectric in Eq(22). It follows that

Mo~ ~ . . the two-atom T-matrix is
‘Jlong(erRz) == 1_2 M1 'fx(Rl)fx(Rz) M-

h I A
o T@ = 1/p ( M1 BTy M1M2T1~]12T2)
(420 1=-T 5T B\ o Todio Ty jaaioBT, )
Notice thatJ,y,q is independent of the frequenay. It is the (44
generalization of the static dipole-dipole interaction that is . . . . . .
well known for free space. Both the generalized transversith the dipole-dipole interactiod,, defined in Eq(41) and

2 2 2 H 2
and the longitudinal dipole-dipole interactions are given herd3 8Su @/ (figqc?). Each of the four matrix elements of?

in terms of generalized transverse modes. Biffy,sand 'S @ dyadic of the same type as the single-atom T-m&26x.
Jong @re influenced by the medium. Now abbreviatK (r ,R4,w) asK(r1) and similarly for other

Both GT and GL have nonretarded dipole terms, so that aterms. The Green functiok®(r1) can be written with Eq.
change in a source term changes instantaneously the lond#0) as
tudinal and generalized transverse fields elsewhere. It is only ) _ . @) @
their sum that is fully retarded. This is well known for free- KE(rD) =K(rD) - [+ Ty - KD + Taz - K(21)]
space Green tensofsee[48]) and it holds likewise for the +K(r2) [T K1) +TZ -K(2D]. (45
Green function! andGF_ . of homogeneous dielectrics _ _ .

HAEEONSS hom hom geneots d 'S Use Eq.(44) to rewrite the T-matrix elements a1? in terms

as given in the Appendix. f the sinal T . The fi f th
It might seem strange that the longitudinal interaction Eq.o the single-atom T-matrices. The first one of the two parts

(42b) is not given in terms of longitudinal modes. The physi- O.f Fhe source fielc(43) is associated .With .Iight initially e
cal reason is that longitudinal modes do not couple to thé:‘Idlng in atom 1. This part can be written in terms of single-

atoms in our formalisnisee Sec. Il A Still, apart from the atom properties as

generalized transverse solutiodngwith w, # 0) of the wave 1+T,X,/8

equation(2), there are also longitudinal solutiomg, (with KA(r1)-s;= (W)

w,=0). There is a mathematical identity that allows one to ~ Tl TolB

rewrite the longitudinal interaction E¢42b) in terms of lon- X[K(rd) - o + K(r2) - uoTod0q/ 819,
gitudinal modes. The identity originates from the fact that the (46)

modes({f,,q,} together span the entire space of functitins
with [dre(r)|h(r)|><ee. This space consists of a subspace ofwith X;=X(w) as defined in Eq(30). The source field has
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now been expressed in terms of the T-matrices of the indiin parts that depend on the medium alone and parts that
vidual atoms, but it is rewarding to break up the T-matricesdepend on the atoms:

(02~ QST (r) - fia(? — 07— 20%) +K(12) - 120315
(2) .Q =
S T 097 - 20(%, + o) (- 0D + 4P KXo~ B @7

The denominator carries the important information about theliscerned. The driving term is the dipole-dipole interaction
resonance frequenciék, ((2) of the two-atom system. There J;, and it signifies how important the one atom is as a light
are two resonance frequencies néaand two near €. If source for the other. The teriif2;-(,)/2 is a detuning:
these resonance frequencies change little due to the electriarger medium-induced local differences felt by the identical
magnetic coupling with the dielectric, we can replace theatoms make the resonant transfer of a photon between them
frequency dependent function$, J(w) and Ji(w) in the less probable. The driving term and the detuning have the
above expression by their valuesdr= +(). This is the pole same physical origin and cannot be changed independently.
approximation that we also made for the single atom. WeBy bringing the atoms much closer in each other’s near field,

find the two resonance frequencies they will be tuned better and interact stronger at the same
5 time. The outcome of the competition between medium-
Q.(Q) =0+ Xt X + (M) +32,. (48 ?nduced driving and detuning will be studied in an example

2 2 in Sec. VII.

The time dependence of the source field can now be cal-
culated with an inverse Laplace transformation. Notice that
the positive-frequency poles in E@L9) have negligible resi-
dues in terms proportional td)}; similarly, negative-

. ; . . . frequency poles hardly contribute to terms involving the an-
single-atom frgqgenC|e91 and §), with their medium- nihilation operatorb;(0) and can be neglected as well. The
dependent radiative shiftd; , and decay rate¥’; ,. In the ' . . -
oo ; ; : total source field=g,,4r ,t) is the field(49) that originates
other extreme situation, for atoms with parallel dipoles atom§ o e
rom the initial excitation of the atom labeled 1, accompa-

g?rlg?z\t%%t(;?n%ﬁiﬁj %(;h (?eﬂgg; ;;{?+$ﬁg:g:§h§e];m§etgge nied by the source field that originally came from the second
' atom:

limiting value zero. Analogous to free spacg, corresponds

to the superradiant state of the two-atom system in the me- :

dium, whereag)_ is the frequency belonging to the subradi- Fsourcdr ) = L1(r, )by (0) + Lo(r,)by(0) + H.c.  (51)

ant state. _ )
Now rewrite Eq.(47) as a sum over individual first-order The vector; can be written as the sum bf, andL ,_, with

frequency poles. With Eq12) one has ‘
-iu foo w29t g+ Q)

H 2

—lpw Lq.(r,t) = 1)

K(Z) rl . = ( ) 1+ 2 _
(r1)-s; E Zog00, dareqC w-Q, 20,

The other two resonance frequencies occur@tl({-)), SO
that all four have negative imaginary parts.

When the atoms are far apart, thép tends to zero and
the two resonance frequenci€k. (48) are simply the two

X [K(r,Ry,w) - (1 £ sina)
+ K(r,Ryw) - procosa]. (52

X[K(rl) - mi(1£sina) £K(r2) - p,cosa]
X [(0+Q)by(0) + (0= Q)b](0)]
x( 1 1 ) (49) This is the central result of this section. Vectars, can be

w-Q. o0+Q, found by interchanging the indices 1 and 2 in the right-hand
A h side of EQ.(52), which also causes a sign change in &in
A (compley anglea=a({)) has been introduced which mea- (50).
sures the inhomogeneity of the medium as felt by the two- Equation(52) describes the full time dependence of the
atom system, in comparison with the atom-atom interactiongource that is excited at time=0. Initially light has been
sina=(Q, - Q,)/A, cosa=2JJA, (50) emitted but has not arrived at the dete_ctor yet. This .initial
phase lasts a certain delay tirgg depending on the optical
with A equal toy/(Q2,-Q,)%+4J%,. When the angler is zero  path length between source and detector. The initial phase is
(such as in free spagethe atoms are said to be placed atfollowed by a transient regime, in which light that has cho-
equivalent positions in the medium. sen the shortest path already arrives at the detector, at
In the expressioni48) for the resonance frequencies and while light that takes a longer path has not arrived yet. The
in the anglea (50), a driving term and a detuning can be transient regime can be neglected if it lasts much shorter than
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the typical atomic decay time, which is usually the case

PHYSICAL REVIEW A 70, 053823(2004)

one “plane scatterer” and of several parallel planes, but we

Assuming the same delay time for both resonance frequerenly used it to calculate spontaneous-emission rates. For a

cies and for both atoms, we find

— QL+, .
Zpu(Q+ 0. , 2 gt — 10t
480C

X [K(r,R1,Q) - (1 £sina)
+K(r,R,,Q) - ,cosal.

Lli(r !t) =

(53

In this equation we see that the source amplitudes of th

atoms are influenced by their environment. There are overa

factors which are equal for both atoms. The atoms differ i
that the source amplitude of the light that is finally emitted
by the first atom has a factqiltsina) while the corre-
sponding factor for the second atom is eosThe results for

the source field can be inserted into the intensity operator

[33]

I(r,t) = 26,cEX(r,t) - EM(r 1), (54)

n

more detailed discussion of the plane-scatterer model and the
method to calculate the Green tensor, we refef5(@. Be-

low, we give a brief outline of our calculations. We will then
focus on those aspects of our results that we believe are
generic for many more inhomogeneous dielectrics.

The atomic dipoles are assumed identical and parallel to
each other(u;=p,), and parallel to the plane. Moreover,
assume the atomic positiofg=(x;,Y;,z) to be confined to

e linex;=y;=0. The plane is assumed perpendicular to the
Z axis. The interatomic interaction EGt1) can then be writ-
ten as

3c
J12=J(R,R,,Q) = Fo(

=) fo digk (G*+G*). (57

Here, G stands for the component of the Green tensor
G(ky,z1,2,,2) that describes propagation cfpolarized
light, while G** describesp-polarized light[50]. For a single

to give the time-dependent intensity of the light emitted byplane, we have

the two atoms, at a detector position whe(e) equals unity.

Suppose that the two atoms share a single excitation so that G 1Ki21,2,) = G3ki, 21,22, ) + G51K;, 21, Zptane )

their initial state is the superposition
[W(t=0))=[pb(0) + €\1-p?}(0)]|0).  (55)

Then the expectation value of the intensity operator is
(1(r,0) = 2e6¢{p?L 1P+ (1 - pILI2
+2pV1-p’Re[€L] - L,l},

where variablegr ,t) were dropped.
From Egs.(53) and(56) it follows that both atoms act as

(56)

XTSS(k{hQ)G?)S(kH’ZpIane ZZvQ)- (58)

The free-space tensor componeBfik,z;,2,,Q) equals
expik,]z;—z|)/ (2ik,), with the wave vectoik, defined as
V(Q/c)z—kf. The T-matrix T¥k;,Q)) of the plane for
s-polarized light has the form [{Dg(Q/c)?)™1-i/(2k,)]™
The plane is fully characterized by the single parambBigg
which we call its “effective thickness.” We choose the value
Des=0.23\. With this choice, 32% ofs-polarized light is
transmitted through the plane when averaged oveinéom-

sources and superradiance can take place, even if only thad angles. Higher values @ give less transmission. For

first atom is initially excited(so thatp=1). This point was
stressed for two-atom emission in free spacg4f]. The
time-dependent intensity that passesras a complicated

interference pattern of source fields emitted by four sources= (KC/Q)°Gg,

a faster) and a(more slowly decaying source &4, and
also a fast and a slow source at the atomic posignThe

the Green tensor componeat’ in Eq.(57) one can write an
expression analogous to E¢8): in the right-hand side
of Eq. (58), the component$§® must be replaced by’
and  Tk,Q) by  T%(k,Q)=
~[(Der(Q/0)?) =ik 1 (207 ]

If in the integral Eq.(57) the in-plane wave vectok;

photon is shared by and exchanged between the atoms unfiecomes larger thafd/c, then the wave vectdk, becomes

it is finally emitted, via either the fast superradiant or the

slow subradiant decay process. Amplitudes of the fast an
slow sources originating from an initially unexcited atom

purely imaginary and equal tdk, with « equal to
dkﬂz—(Q/c)Z. The semi-infinite integration interval in Eq.

(57) therefore falls apart into two parts: a radiative part with

depend both on the interaction between the atoms and dq between 0 and)/c, and an evanescent part wihfrom

their medium-induced detuning.

VII. APPLICATION: SUPERRADIANCE NEAR
A PARTIALLY REFLECTING PLANE

Our multiple-scattering formalism will now be applied to

Q/c onwards. The evanescent part of the integral is purely
real, except that there is a purely imaginary contribution
from a pole inTsSat k=D«({2/c)?/2. This pole corresponds
to ans-polarized guided mode. Near the pole, the real eva-
nescent part of the integral over teavave integrand in Eq.
(57) must be taken as a Cauchy principal-value integral.

the situation of two identical atomic dipoles in the vicinity of There is no corresponding poleTH’. The evanescent part of
an infinitely thin plane that partially reflects light. We are the integral forp-polarized light is purely real and can be
interested in medium-induced spontaneous-emission ratesyaluated numerically right away. All relative errors in our
Lamb shifts, interatomic interactions, and sub- and superraaumerical results are smaller than 40

diant decay rates. These quantities of interest can be ex- The single-atom spontaneous-decay rate (Bd) can be
pressed in terms of the Green tensor of the medium. In &und from the interaction Eq41) through the relation
recent papef50], we already developed a method to effi- I'(R;,Q)=-2ImJ;5(R;,R1,Q), while the the Lamb shift
ciently calculate the Green tensor of a medium consisting oEq. (32) follows from A(R;,Q)=RdJ;5(R;,R;,Q)
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the distance of the plane to this first atom is chosen, and then
the absolute value of the interatomic interactigpis plotted
as a function of the position of the second atom, relative to
the free-space valuké(l(g|. The interaction is the sum of ra-
diative and evanescent interactions, of bstholarized and
® p-polarized light. The figure shows that fag approaching
"""""""""" z,=0, the relative difference betwedd,,| and the(diver-
geny free-space interaction strengtﬂ(loz)\ becomes negli-
. gible, irrespective of the position of the plane. This holds
; independently of the reflectivity of the plarieot shown in
n 1.0 18 Fig. 1. Interestingly, the dipole-dipole interaction is also in-
dependent of the position of the plaftzut not of its reflec-
FIG. 1. Spontaneous-emission ratgsolid line) and Lamb shift  tivity) if the plane stands in between the two atoms. In other
A (dashed ling as a function of the position of an atom near a words, with the atomic positions fixed at either side of the
partially reflecting plane. The effective thickness of the plane isplane, one can move the plane back and forth without chang-
De=0.23\. The atomic dipole moment points parallel to the plane.ing the interatomic interaction. This fact can be read off from
The plane is positioned ajq,e=0.4\, to make comparisons with  Fig. 2 for z,/A > 0.4, where the three grapksorresponding
later figures easier. Bothi andA are given in units of’y, and the o three plane positionsverlap. It can also be understood
positionsz are scaled to the wavelengitv2mc/() of the emitted  from the form of the interaction in Eq57), because all
light. The period of the damped oscillations in bétfandA is \/2. terms in the interaction either depend @_Zﬂ or on (|21
~Zyiand + |22~ Zyjand)- FOr 2,<0 and|z|>\, the relative in-
-39(R1,R;,Q)]. Figure 1 shows how single-atom proper- teraction|J,/J\%| approaches a constant value, which can be
ties are modified by the presence of the plane. The figureither larger or smaller than unity, depending on the distance
shows a peak in the decay rate near the plane due to emissiofithe plane to atom 1. As a check on our calculatiémst
into the guided modefb0]. Away from the plane, the decay shown, we found that interatomic interactions vanishes
rate shows damped oscillations towards the free-space decaypectegl when an almost ideal mirrofa plane withDgg
ratel'. There are two oscillations per wavelengtha char-  =100\) is placed in between them.
acteristic also well-known for spontaneous emission near a Figure 3a) shows two-atom superradiant and subradiant
perfect mirror[44]. The Lamb shift shows similar damped decay rates, as modified by the presence of the plane. The
oscillations around\=0 away from the plane. At distances plots are based on Eq&t8) and (57). The complex square
less than\/10 the shift becomes strongly negative and itroot in Eq.(48) has solutions that differ by an overall minus
actually diverges to minus infinity. The atom is attracted tosign. Care was taken to choose the solution from the same
the plane[44], but here we assume atomic positions to bebranch as we varied the position of the second atom. Without
fixed. the plane, one would have hag ,=Tx+ 2 Im J\2. With the
In Fig. 2 we present dipole-dipole interactions for two plane, the medium-induced detuning becomes negligible as
atoms near a plane. The first atom is kept fixed in the Ol’igiﬂz2 approacheg,. ThenI'_/T; vanishes, as in free space. The
corresponding small-distance limit bf. /T’ is not equal to 2
T T y T as for free space, but rather twice the single-atom decay rate
\_‘ I'=1.14; in the presence of the plane. If the second atom
] S X &\ — 1 moves towards the mirror, then the medium-induced detun-
el ¥ ——] . . . . . . .
P i 7 \j ing (see Fig. 1 grows fast while the dipole-dipole interaction
g (Fig. 2) decreases. With Eq48) we then find thal”"_=T,
andl’, =T";. Indeed, forz, closer tham/10 to the planel -
follows the single-plane emission rate of Fig. 1, while
equalsl'(R4,Q)=1.14",. With atom 2 so close to the plane,
superradiance is completely absent, even though the identical
0.0l— . . . atoms are less than half a wavelength apart.Z;or0.5\ or
04 02 00 02 22110'4 0.6 2,< 0.3\, detuning has become less important and the decay
rates follow(not quite sinusoidaldamped oscillations. Their

FIG. 2. Absolute values of interatomic interactions PETOd iSX, as itis for superradiance in free space.
J1(R1,R,, Q) near a partially reflecting plane, scaled to the free- Figure 3b) again shows super- and subradiant decay
space interaction strengu{f’z)(Rl,Rz,Q)l.The plane is as in Fig. 1. "ates, now also for Iarggr. interatomic d|stances.. qu -4
The first atom’s position is fixed in the origin. The second atom= Z/A =3, the rated’, exhibit the same damped oscillations
travels along the linéx,=y,=0,2,). The atomic dipoles pointinthe With period \ that we also saw in Fig.(8). However, for
same directions, parallel to the plane. The three graphs differ in th&/\ smaller than -4 or larger than B, showtwo oscilla-
position of the plane with respect to the first atom. Solid line: tions per wavelength, like we saw for the single-atom decay
Zyiand N=0.4; dashed linezy,nd \=0.2; dotted line:z,,,/A=0.1.  rate in Fig. 1. Hence we can identify a rather sharp crossover
(All three planes are shown, but in each case considered only eegime at a few wavelengths away from the plane between
single plane is preseit. superradiance and single-atom emission. For larger dis-
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(b) R FIG. 4. Absolute value of the source amplitudg=cosa of the
20 . i second atom, divided by the source amplitl@g=(1+sina) of
[ i the first atom. The situation is as in Fig. 3. The amplitudes are
[_'?'1_5 :3 : associated with superradiant emission; see(E8§).

1.0

sion rates of Fig. 3 and the relative amplitudes in Fig. 4 show

the same crossover regions between oscillations with periods

N/2 and\. When the two atoms coincide, the detuning van-

ishes and|C,/C,,| equals unity.(For free space|C,/C,,]|

2 equals unity everywhere, even if the atoms do not coingide.

Z/A The coinciding atoms are equivalent and superradiance can
occur. On the other hand, close to the planézat\ —0.4

FIG. 3. Subradiant and superradiant decay rates for two atoms: 0.1, atom 2 is strongly detuned af@,/C,,| vanishes: the

near a partially reflecting plane, as a function of the position of thesecond atom emits none of the light initially residing in the

second atom. The situation is as in Fig. 2 with the plane fixed afjrst one and superradiance does not occur.

Zyiand N=0.4. Figure(@ zooms in around the plane, showing a van- Figure 4 also shows that at larger distan¢es< -4 or

ishing subradiant decay raté_ (solid line) as the second atom z,=3), detuning is again strong enough to make emission by

approaches the first one in the origin. The superradiant decay raE e second atom less probable than in free space. At these
I'; (dashed ling becomes more than twice the single-atom decay,

ratel’y. BothI'_ andI’", show perturbed oscillations on the scale of larger distances, the medium-induced detuning suppresses
; . ) the net transfer of light from atom 1 to atom 2 and superra-
\. Figure (b) zooms out to larger distances, showing a crossove

r. .
regime between damped oscillations with a pefiodnd more dis- g'glce /d)t)is3n0th0ccur. In thedtwo |ntedrvals<—z2)\<0.3 and that
tant oscillations with a period/2. 5<z, where superradiance does occur, we see tha

the peaks of the relative source amplitufie,/C,,| are
hl;}igher than unity. There the probability that light initially
éesiding on the first atom is finally emitted by the second one
Is higher than in free space. The peaks of Fig. 4 correspond
to positions of the second atom for which most light is finally
emitted by the second atom, although initially only the first
tom was excited. Interestingly, the peaks|@§/C,.| be-

05

0.0
)

tances, again medium-induced detuning dominates t
dipole-dipole interaction. Indeed for large distances we se
the same behavior as very close to the plane, namely'that
approached’, (which at these positions almost equély
while I', has the limiting valud™y=1.14",,. In the crossover

regime,|J;,| has the same order of magnitude as the detunin ; .
9 91 9 ome higher as the second atom moves away from the first.

|A1_A2_i(rl_rz)/2|. . .
If one puts the plane closer to the first atom, then thisThe highest peaks occur when the complex-valued dipole-

atom becomes further detuned from its free-space prOpertieg!prgltallexl-rc/:i%“odnetﬁ?:m&ssbucﬁxgcrgso:;)mpsei'?us;tzirsm dg]:s
The crossover should then take place with the second atom spmp ‘

shorter distances where the interaction is still stronger. Thi%?toﬁglzti f?):édi?] ?gf;clﬁeggrfégmiz stz?svc;ralsr?oerl:chlhtheensate
we have verifiednot shown. At a fixed frequency, the spa- P P P

tial intervals in which superradiance occurs therefore depenf r the detundlng an(tj F'.g' |4 S?OWS very abrup'é t:ﬁns_(ljtlonsf
on three distances, namely the interatomic distance and t %om isuperra lance 1o single-atom emission on both SIdes o
distances between each atom and the plane. € piane.

Not only the super- and the subradiant emission rates are
mflue_nced by the presence of the plg_ne, but alsq the source VIIl. CONCLUSIONS, DISCUSSION, AND OUTLOOK
amplitudes of the two atoms are modified, shown in (G8):
if initially only the first atom is excited, then the source In this paper, a multiple-scattering theory was set up with
amplitude of the second atom is modified by a fadyr  at its heart the Lippmann-Schwinger equatidd) that de-
=1#sina, for superradian{+) and subradiant-) decay, scribes the electromagnetic field operators in an inhomoge-
respectively. Atom 2 gets a fact@, = cosa for both decay neous dielectric with guest atoms present. We solved the LS
processes. Figure 4 sho\@,/C,.,| asz, is varied. The emis- equation exactly in terms of the properties of the atoms and
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the Green tensors of the medium, both when one and when The multiple-scattering formalism has been used to study
several guest atoms are present. The solution for the electriuperradiance in an inhomogeneous medium. The often
field operator has three parts: a part that has not seen tliminant electronic component to inhomogeneous broaden-
guest atoms, a part that describes the scattering by the resog was neglected in order to focus on photonic effects. As
nant atoms, and a part that describes the atoms as sourcean application, we studied how dipole-dipole interactions
Our formalism is a generalization of an already existingand two-atom superradiance are influenced by a partially re-
point-scattering formalism for classical waves. The generaliflecting plane. We found position-dependent modifications of
zation is twofold: first, our formalism is valid not only for dipole-dipole interactions. For our choice of parameters, the
free space but for atoms in all dielectrics that can be deplane suppresses superradiance if one of the atoms is very
scribed macroscopically in terms of a real relative dielectricclose or very far from the plane. Both atoms will then emit as
constante(r). Second, it is a multiple-scattering theory in if alone. For intermediate distances, two-atom sub- and su-
guantum optics rather than classical optics. In relation to thiperradiance will occur. Due to the plane, emission rates are
point we find the double nature of atoms both as scatteremodified and so are the relative amplitudes of the atomic
and as sources of light. The formalism is quantum mechanisources. Interestingly, we found that medium-induced com-
cal in the sense that it can describe the propagation and scgilex detuning can lead to enhanced transfer of light from the
tering of nonclassical sources of light. These can be eithedne atom to the other, before superradiant emission occurs.
external or atomic sources. In quantum optics, the mediunAlso, we found sharp crossovers between spatial intervals
must be described with more care, just like the quantum an@here superradiance occu(with decay rates oscillating
classical descriptions of a beam splitter diff&8]. As for the  once per wavelengjtand single-atom emissiqitwo oscilla-
beam splitter, classical light sources give classical measurdibns per wavelengh
fields in our formalism, since we described the guest atoms The length of the intervals in which superradiance occurs
as harmonic oscillators. depends on the atomic positions with respect to each other
A nice feature of the LS equatiofil) is that it follows and to the plane. This length could be called a “perpendicular
exactly from a dipole Hamiltonian that is the result of acoherence length.” This would complement the concept of a
canonical quantization theory. The Hamiltonian describedransverse coherence lengilor effective mode radiys
guest atoms microscopically and treats the dielectric macrg20,5]. The latter concept is used in the analysis of coop-
scopically. The atomic dipoles do not couple to the electricerative emission in a planar microcavity when the atoms
field operatorE but rather to a field operator that we ckll  have the same-coordinate, but have different coordinates in
and that includes the atom’s own polarization field. For freeanother direction. An important difference between the two
space this is a well known result. We find that the propagatolengths is that only the perpendicular coherence length is
for the fieldF in our LS equation is not the ordinary Green influenced by medium-induced detuning.
tensorG, but rather a Green tensor that we calledThere We believe that our results for cooperative emission near
exists a simple relatio22) betweenG andK for an arbi- the plane are generic and that similar crossover regions will
trary dielectric.G can be split into the generalized transverseoccur in more complex dielectrics. Still, it would be interest-
Green tenso6" that propagates the vector potendgland  ing to study the influence of other dielectric structures on
the longitudinal Green tens@". multiatom processes, Bragg mirrors for example, or “optical
In the Appendix we showed that the volume-integratedcorrals” [52,53. Photonic crystals are also very interesting
electric field(A6) produced in free space by an atomic dipole media, for which superradiance has only been studied in an
is equal to minus one third of its polarization field. This is anisotropic model[21-23 where all position dependence is
operator relation at finite frequency. A differefibhcorrecy neglected. Like near a plane, superradiance inside a real pho-
relation would have resulted if the field had been inter- tonic crystal will be influenced by medium-induced detun-
preted as the electric-field operator. We have not come acro$sg. As another application of our formalism, statistical dis-
other work that addresses the relation between the dipol&ibutions of optical proximity resonances of many-atom
interaction, the occurrence &f rather tharG in a multiple-  systems can be studied, to find analogies and differences in
scattering theory, and the volume-integrated electric fieldnhomogeneous optical and electronic syst¢&.
around a dipole. In this respect, our formalism also sheds We made a pole approximation in a late stage of our for-
new light on quantum optics in free space. malism, after which we found exponential atomic decay. The
The infinitely sharp single-atom resonance in the potentiapole approximation no longer holds when the atom-field in-
V obtains a radiative shift and a width in the T-matfixin  teraction becomes stron¢s5]. The approximation also
our formalism, the position-dependent shift and decay ratdreaks down if local densities of states jump steeply as a
are the summed effects of infinitely many light-scatteringfunction of frequency near the atomic transition frequency.
events off the atomic potential. The scattered-field operatofhere is a current debate whether pole approximations will
for a single atom contains two parts: an elastic-scatterindgpreak down at the band edges of realistic three-dimensional
term and a term describing resonance fluorescence. Direphotonic crystal$56], like it is found for the isotropic model
interatomic interactions are absent in the dipole Hamiltoniarj57]. In principle, our formalism could also be used without
(1c). Dipole-dipole interactions appear “dynamically” in the making the pole approximation.
solutions of the Lippmann-Schwinger equation for several Our theory is valid if frequency dispersion of the medium
atoms. An inhomogeneous medium modifies both the longiean be neglected. Now single-atom emission rates only de-
tudinal and the generalized transverse dipole-dipole interagsend on one frequency of the medium, so that dispersion is
tions; see Eqs(42g and(42b). not important. On the other hand, radiative line shifts, inter-
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atomic interactions, and hence superradiant decay rates do 2. Volume-integrated dipole field
depend on all frequencies of the medium. In our example of
two atoms near a plane, the immediate vicinity of the atomg,,
was free space. However, for atoms embeddedsid part
of a medium, line shifts would diverge unless frequency dis-the atomic polarization fields, P, of Eq. (3), with the vol-
persion of the medium is taken into accoy8]. This will "o o0 0t 2 small spherTr]emencIosing :an atom.

also be the case for position-dependent radiative shifts in ', _——

; ) . . . With the help of the Eqg9a) and(9b), and the definitions
photonic crystalg59)]. It will be interesting to study the in- of the source field¢$12) and potential§13), the polarization
Field in frequency space can be related to other operators as

The rigorous multiple-scattering formalism of Sec. Il with
e Green function will now be used to calculate the
volume integral of the electric-field operat&rin terms of

tive atomic emission, for example based on Rg34.,60.
_ (&
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2 N
F(r, ) = EO(r,w) - LCZE K(r,R,,®) - Po(w).

€0b m=1

(A4)
APPENDIX: HOMOGENEOUS DIELECTRIC This equation is still valid for all inhomogeneous dielectrics.
Now assume that the sources are in free space. Consider the
1. Delta and Green functions volume-integral of the field= over a small spheréenoted

by ©) containing only the source ®,, at its center. The
integral is determined by the free-space Green function
o(r,Ry, ) for positionsr close toR,, [see Egs(21) and
a(T22)]. The transverse Green functi@}(r —R,,, ) in Kq has
a vanishing contribution to the integral, since its pole goes as
Ir-R,| at short distancefsee EqA2a)]. The dipole part of
T 2 1 o the transverse delta functiofh\la) has a vanishing angle-
Shonl1) = 55(r)| - ﬁ“ -3 ®f), (Ala)  integral over the sphere and does not contribute either. What
& remains is the delta-function part of the transverse delta
function, which gives the radius-independent result

For a homogeneous dielectric with refractive indexhe
property “generalized transverse” reduces to transverse in t
ordinary sense. The medium is translational invariant, so th
6"t (r,r')=6"L(r-r"). The transverse and longitudinal delta
functions appearing in Eq$17) and(19b) now become

5hom(r):15(r)l+i3(l—3f ®f), (A1b) 2
3 4t J dr F (1, 0) = 2—Pn(0). (A5)

wheref is defined as/|r|, the unit vector in the direction of © “o
r. The sum of the transverse and the longitudinal delta funcNow the subtlety becomes important that the figte
tion is simply &(r)l, since their “dipole” parts cancel. Notice —-D(R)/[gqe(R)] is equal to the electric fiel& everywhere
that n does not enter these delta functions. The derivatiorexcept at the positions of the guest ato®se Eq(4)]. The
follows the free-space treatmej8]. expression in Eg(A5) is therefore not equal to the volume-

The dyadic Green functioon(r,r')=Gpon(r =) for integrated electric field. With the definitions of the fields
the homogeneous medium is the sum of a transverse andaamdF given in Sec. Il A, one obtains the relation
longitudinal part. The transverse part[#0]

1
I-3Fof e f@ drE(r,e)=- S—SOPm(w)- (AB)

e [P(inwr/c)l
4 (nwlc)er Agr ) . . . .
. o The static and classical version of this “sum rule” is pre-
+Q(inwrlo)f ® 7], (A2a)  sented for example if61]. There, and more recently [A0],
with the functionP(z) defined as1-z+72) andQ(2) as a delta function is added by hand to the static dipole field or

(~1+371-37°2). With the use of the definitior193 of the to the longitudinal Green function. In contrast, E46) was

L ) . _found here as an operator relation without adding any terms
longitudinal Green function and the transverse delta functlo%y hand P gany

(Ala), the longitudinal Green function is found to be

Ggom(r,w) =-

The interpretation of the field to which a dipole couples is
-3 ®F S(r) not just a matter of choice in the present formalism. If one
A (nel0)2r + 3nwlo)? (A2b)  wrongly identifiesF as the electric fieldE but correctly de-
rives the relation(21) or (22) betweenK and G, then the
The delta-function term iG},,, appears naturally and there wrong volume-integrated electric fieldP2(w)/(3g,) would
was no need to add it “by hand” as is done elsewherédave resulted. The delta function term that is the difference
[40,61. betweenG andK in Eq.(22) and the difference between the

Ghom(r,w) =
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field operatorsE and F have the same physical origin: the
atomic polarization field.

PHYSICAL REVIEW A70, 053823(2004)

the classical electric field and furthermore that light propa-
gates from a source according to the Green fundBamther

Still, there is nothing truly quantum mechanical about thethan K. By summing Eqs(A2a) and (A2b) for n=1, one
sum rule(A6). In a classical canonical theory, one would find finds thatG, naturally has the correct delta-function term to

the same dipole couplinggF and Green functiolK. How-

produce Eq(A6). Therefore, although following a less rig-

ever, a canonical formalism is usually by-passed in classicabrous procedure, one has the luck that there is no need to add
optics. It is then assumed that a classical dipole couples tterms by hand in order to derive EGA6) classically.
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