157 research outputs found

    The transport of cosmic rays in self-excited magnetic turbulence

    Get PDF
    The process of diffusive shock acceleration relies on the efficacy with which hydromagnetic waves can scatter charged particles in the precursor of a shock. The growth of self-generated waves is driven by both resonant and non-resonant processes. We perform high-resolution magnetohydrodynamic simulations of the non-resonant cosmic-ray driven instability, in which the unstable waves are excited beyond the linear regime. In a snapshot of the resultant field, particle transport simulations are carried out. The use of a static snapshot of the field is reasonable given that the Larmor period for particles is typically very short relative to the instability growth time. The diffusion rate is found to be close to, or below, the Bohm limit for a range of energies. This provides the first explicit demonstration that self-excited turbulence reduces the diffusion coefficient and has important implications for cosmic ray transport and acceleration in supernova remnants.Comment: 8 pages, 8 figures, accepted for publication in MNRA

    VISIR-VLT Images of the Water Maser Emitting Planetary Nebula K 3-35

    Full text link
    K3-35 is an extremely young bipolar planetary nebula that contains a precessing bipolar jet and a small (radius 80 AU) water maser equatorial ring. We have obtained VISIR- VLT images of K 3-35 in the PAH1 ({\lambda}=8.6 {\mu}m), [S iv] ({\lambda}=10.6 {\mu}m), and SiC ({\lambda}=11.85 {\mu}m) filters to analize the mid-IR morphology and the temperature structure of its dust emission. The images show the innermost nebular regions undetected at optical wavelegths and the precessing bipolar jets. The temperature map shows variations in the temperature in the equatorial zone and in regions associated to its jets.Comment: 2 pages, 2 figures, 283 IAU Symp. Planetary Nebulae an Eye to the Futur

    The Molecular Gas Environment around Two Herbig Ae/Be Stars: Resolving the Outflows of LkHa 198 and LkHa 225S

    Full text link
    Observations of outflows associated with pre-main-sequence stars reveal details about morphology, binarity and evolutionary states of young stellar objects. We present molecular line data from the Berkeley-Illinois-Maryland Association array and Five Colleges Radio Astronomical Observatory toward the regions containing the Herbig Ae/Be stars LkHa 198 and LkHa 225S. Single dish observations of 12CO 1-0, 13CO 1-0, N2H+ 1-0 and CS 2-1 were made over a field of 4.3' x 4.3' for each species. 12CO data from FCRAO were combined with high resolution BIMA array data to achieve a naturally-weighted synthesized beam of 6.75'' x 5.5'' toward LkHa 198 and 5.7'' x 3.95'' toward LkHa 225S, representing resolution improvements of factors of approximately 10 and 5 over existing data. By using uniform weighting, we achieved another factor of two improvement. The outflow around LkHa 198 resolves into at least four outflows, none of which are centered on LkHa 198-IR, but even at our resolution, we cannot exclude the possibility of an outflow associated with this source. In the LkHa 225S region, we find evidence for two outflows associated with LkHa 225S itself and a third outflow is likely driven by this source. Identification of the driving sources is still resolution-limited and is also complicated by the presence of three clouds along the line of sight toward the Cygnus molecular cloud. 13CO is present in the environments of both stars along with cold, dense gas as traced by CS and (in LkHa 225S) N2H+. No 2.6 mm continuum is detected in either region in relatively shallow maps compared to existing continuum observations.Comment: 14 pages, 10 figures (5 color), accepted for publication in Ap

    Formation of hard VHE gamma-ray spectra of blazars due to internal photon-photon absorption

    Full text link
    The energy spectra of TeV gamma-rays from blazars, after being corrected for intergalatic absorption in the Extragalactic Background Light (EBL), appear unusually hard, a fact that poses challenges to the conventional models of particle acceleration in TeV blazars and/or to the EBL models. In this paper we show that the internal absorption of gamma-rays caused by interactions with dense narrow-band radiation fields in the vicinity of compact gamma-ray production regions can lead to the formation of gamma-ray spectra of an almost arbitrary hardness. This allows significant relaxation of the current tight constraints on particle acceleration and radiation models, although at the expense of enhanced requirements to the available nonthermal energy budget. The latter, however, is not a critical issue, as long as it can be largely compensated by the Doppler boosting, assuming very large (30\geq 30) Doppler factors of the relativistically moving gamma-ray production regions. The suggested scenario of formation of hard gamma-ray spectra predicts detectable synchrotron radiation of secondary electron-positron pairs which might require a revision of the current ``standard paradigm'' of spectral energy distributions of gamma-ray blazars. If the primary gamma-rays are of hadronic origin related to pppp or pγp \gamma interactions, the ``internal gamma-ray absorption'' model predicts neutrino fluxes close to the detection threshold of the next generation high energy neutrino detectors.Comment: 10 pages, 8 figures, submitted to MNRA

    Cosmic Rays X. The cosmic ray knee and beyond: Diffusive acceleration at oblique shocks

    Full text link
    Our purpose is to evaluate the rate of the maximum energy and the acceleration rate that cosmic rays acquire in the non-relativistic diffusive shock acceleration as it could apply during their lifetime in various astrophysical sites, where highly oblique shocks exist. We examine numerically (using Monte Carlo simulations) the effect of the diffusion coefficients on the energy gain and the acceleration rate, by testing the role between the obliquity of the magnetic field to the shock normal, and the significance of both perpendicular cross-field diffusion and parallel diffusion coefficients to the acceleration rate. We find (and justify previous analytical work - Jokipii 1987) that in highly oblique shocks the smaller the perpendicular diffusion gets compared to the parallel diffusion coefficient values, the greater the energy gain of the cosmic rays to be obtained. An explanation of the cosmic ray spectrum in high energies, between 101510^{15}eV and about 101810^{18}eV is claimed, as we estimate the upper limit of energy that cosmic rays could gain in plausible astrophysical regimes; interpreted by the scenario of cosmic rays which are injected by three different kind of sources, (a) supernovae which explode into the interstellar medium, (b) Red Supergiants, and (c) Wolf-Rayet stars, where the two latter explode into their pre-supernovae winds.Comment: Accepted in Astronomy and Astrophysics, 9 pages, 8 figures (for the 'Cosmic Rays' series papers

    On-sky results of the adaptive optics MACAO for the new IR-spectrograph CRIRES at VLT

    Get PDF
    The adaptive optics MACAO has been implemented in 6 focii of the VLT observatory, in three different flavors. We present in this paper the results obtained during the commissioning of the last of these units, MACAO-CRIRES. CRIRES is a high-resolution spectrograph, which efficiency will be improved by a factor two at least for point-sources observations with a NGS brighter than R=15. During the commissioning, Strehl exceeding 60% have been observed with fair seeing conditions, and a general description of the performance of this curvature adaptive optics system is done.Comment: SPIE conference 2006, Advances in adaptive optics, 12 pages, 11 figure

    Imaging the outward motions of clumpy dust clouds around the red supergiant Antares with VLT/VISIR

    Full text link
    We present a 0.5"-resolution diffraction-limited 17.7 micron image of the red supergiant Antares obtained with the VLT mid-infrared instrument VISIR. The VISIR image shows six clumpy dust clouds located at 0.8"--1.8" (43--96 stellar radii = 136--306 AU) away from the star. We also detected compact emission within a radius of 0.5" from the star. Comparison of our VISIR image taken in 2010 and the 20.8 micron image taken in 1998 with the Keck telescope reveals the outward motions of four dust clumps. The proper motions of these dust clumps amount to 0.2"--0.6" in 12 years. This translates into expansion velocities (projected onto the plane of the sky) of 13--40 km/s with an uncertainty of +/-7 km/s. The velocities of the dust clumps cannot be explained by a simple accelerating outflow, implying the possible random nature of the dust cloud ejection mechanism. The inner compact emission seen in the 2010 VISIR image is presumably newly formed dust, because it is not detected in the image taken in 1998. The mass of the dust clouds is estimated to be (3-6)x10^{-9} Msun. These values are lower by a factor of 3--7 than the amount of dust ejected in one year estimated from the (gas+dust) mass-loss rate of 2x10^{-6} Msun/yr, suggesting that the continuous mass loss is superimposed on the clumpy dust cloud ejection.Comment: 10 pages, 8 figures, accepted for publication in Astronomy and Astrophysic

    The influence of the Alfv\'enic drift on the shape of cosmic ray spectra in SNRs

    Full text link
    Cosmic ray acceleration in SNRs in the presence of the Alfv\'enic drift is considered. It is shown that spectra of accelerated particles may be considerably softer in the presence of amplified magnetic fields.Comment: 4 pages, 4 figures, poster talk at 4-th Gamma-ray Symposium (Heidelberg, Germany, 7-11th of July 2008
    corecore