51 research outputs found

    eredeti vigjĂĄtĂŠk 3 felvonĂĄsban - irta TĂłth KĂĄlmĂĄn

    Get PDF
    Debreceni Nemzeti Színház. Szerdán Április 11-kén 1866. Szathmáry Károly, a pesti nemzeti szinház volt tagja, mint vendég. Szakál Rózsa, szerződött tag első fellépteDebreceni Egyetem Egyetemi és Nemzeti Könyvtá

    A review on nanomaterial-based SERS substrates for sustainable agriculture

    Get PDF
    The agricultural sector plays a pivotal role in driving the economy of many developing countries. Any dent in this economical structure may have a severe impact on a country's population. With rising climate change and increasing pollution, the agricultural sector is experiencing significant damage. Over time this cumulative damage will affect the integrity of food crops and create food security issues around the world. Therefore, an early warning system is needed to detect possible stress on food crops. Here we present a review of the recent developments in nanomaterial-based Surface Enhanced Raman Spectroscopy (SERS) substrates which could be utilized to monitor agricultural crop responses to natural and anthropogenic stress. Initially, our review delves into diverse and cost-effective strategies for fabricating SERS substrates, emphasizing their intelligent utilization across various agricultural scenarios. In the second phase of our review, we spotlight the specific application of SERS in addressing critical food security issues. By detecting nutrients, hormones, and effector molecules in plants, SERS provides valuable insights into plant health. Furthermore, our exploration extends to the detection of contaminants, chemicals, and foodborne pathogens within plants, showcasing the versatility of SERS in ensuring food safety. The cumulative knowledge derived from these discussions illustrates the transformative potential of SERS in bolstering the agricultural economy. By enhancing precision in nutrient management, monitoring plant health, and enabling rapid detection of harmful substances, SERS emerges as a pivotal tool in promoting sustainable and secure agricultural practices. Its integration into agricultural processes not only augments productivity but also establishes a robust defence against potential threats to crop yield and food quality. As SERS continues to evolve, its role in shaping the future of agriculture becomes increasingly pronounced, promising a paradigm shift in how we approach and address challenges in food production and safety

    Ecological genomics: steps towards unraveling the genetic basis of inducible defenses in Daphnia

    Get PDF
    Little is known about the genetic mechanisms underlying inducible defenses. Recently, the genome of Daphnia pulex, a model organism for defense studies, has been sequenced. Building on the genome information, recent preliminary studies in BMC Developmental Biology and BMC Molecular Biology have assessed gene response profiles in Daphnia under predation pressure. We review the significance of the findings and highlight future research perspectives

    Allochthonous resources are less important for faunal communities on highly productive, small tropical islands

    Get PDF
    Abstract Ecosystems are interconnected by energy fluxes that provide resources for the inhabiting organisms along the transition zone. Especially where in situ resources are scarce, ecosystems can become highly dependent on external resources. The dependency on external input becomes less pronounced in systems with elevated in situ production, where only consumer species close to the site of external input remain subsidized, whereas species distant to the input site rely on the in situ production of the ecosystem. It is largely unclear though if this pattern is consistent over different consumer species and trophic levels in one ecosystem, and whether consumer species that occur both proximate to and at a distance from the input site differ in their dependency on external resource inputs between sites. Using stable isotope analysis, we investigated the dependency on external marine input for common ground‐associated consumer taxa on small tropical islands with high in situ production. We show that marine input is only relevant for strict beach‐dwelling taxa, while the terrestrial vegetation is the main carbon source for inland‐dwelling taxa. Consumer species that occurred both close (beach) and distant (inland) to the site of marine input showed similar proportions of marine input in their diets. This supports earlier findings that the relevance of external resources becomes limited to species close to the input site in systems with sufficient in situ production. However, it also indicates that the relevance of external input is also species‐dependent, as consumers occurring close and distant to the input site depended equally strong or weak on marine input

    Modality matters for the expression of inducible defenses: introducing a concept of predator modality

    Get PDF
    Background: Inducible defenses are a common and widespread form of phenotypic plasticity. A fundamental factor driving their evolution is an unpredictable and heterogeneous predation pressure. This heterogeneity is often used synonymously to quantitative changes in predation risk, depending on the abundance and impact of predators. However, differences in `modality', that is, the qualitative aspect of natural selection caused by predators, can also cause heterogeneity. For instance, predators of the small planktonic crustacean Daphnia have been divided into two functional groups of predators: vertebrates and invertebrates. Predators of both groups are known to cause different defenses, yet predators of the same group are considered to cause similar responses. In our study we question that thought and address the issue of how multiple predators affect the expression and evolution of inducible defenses. Results: We exposed D. barbata to chemical cues released by Triops cancriformis and Notonecta glauca, respectively. We found for the first time that two invertebrate predators induce different shapes of the same morphological defensive traits in Daphnia, rather than showing gradual or opposing reaction norms. Additionally, we investigated the adaptive value of those defenses in direct predation trials, pairing each morphotype (non-induced, Triops-induced, Notonecta-induced) against the other two and exposed them to one of the two predators. Interestingly, against Triops, both induced morphotypes offered equal protection. To explain this paradox we introduce a `concept of modality' in multipredator regimes. Our concept categorizes two-predator-prey systems into three major groups (functionally equivalent, functionally inverse and functionally diverse). Furthermore, the concept includes optimal responses and costs of maladaptions of prey phenotypes in environments where both predators co-occur or where they alternate. Conclusion: With D. barbata, we introduce a new multipredator-prey system with a wide array of morphological inducible defenses. Based on a `concept of modality', we give possible explanations how evolution can favor specialized defenses over a general defense. Additionally, our concept not only helps to classify different multipredator-systems, but also stresses the significance of costs of phenotype-environment mismatching in addition to classic `costs of plasticity'. With that, we suggest that `modality' matters as an important factor in understanding and explaining the evolution of inducible defenses

    Chaoborus and Gasterosteus Anti-Predator Responses in Daphnia pulex Are Mediated by Independent Cholinergic and Gabaergic Neuronal Signals

    Get PDF
    Many prey species evolved inducible defense strategies that protect effectively against predation threats. Especially the crustacean Daphnia emerged as a model system for studying the ecology and evolution of inducible defenses. Daphnia pulex e.g. shows different phenotypic adaptations against vertebrate and invertebrate predators. In response to the invertebrate phantom midge larvae Chaoborus (Diptera) D. pulex develops defensive morphological defenses (neckteeth). Cues originating from predatory fish result in life history changes in which resources are allocated from somatic growth to reproduction. While there are hints that responses against Chaoborus cues are transmitted involving cholinergic neuronal pathways, nothing is known about the neurophysiology underlying the transmission of fish related cues. We investigated the neurophysiological basis underlying the activation of inducible defenses in D. pulex using induction assays with the invertebrate predator Chaoborus and the three-spined stickleback Gasterosteus aculeatus. Predator-specific cues were combined with neuro-effective substances that stimulated or inhibited the cholinergic and gabaergic nervous system. We show that cholinergic-dependent pathways are involved in the perception and transmission of Chaoborus cues, while GABA was not involved. Thus, the cholinergic nervous system independently mediates the development of morphological defenses in response to Chaoborus cues. In contrast, only the inhibitory effect of GABA significantly influence fish-induced life history changes, while the application of cholinergic stimulants had no effect in combination with fish related cues. Our results show that cholinergic stimulation mediates signal transmission of Chaoborus cues leading to morphological defenses. Fish cues, which are responsible for predator-specific life history adaptations involve gabaergic control. Our study shows that both pathways are independent and thus potentially allow for adjustment of responses to variable predation regimes

    The long-term consequences of hybridization between the two Daphnia species, D. galeata and D. dentifera, in mature habitats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ecological specializations such as antipredator defense can reinforce morphological and distributional divergence within hybridizing species. Two hybridizing species of <it>Daphnia </it>(<it>D. galeata </it>and <it>D. dentifera</it>) are distributed in both Japan and North America; however, these populations have a longer history in Japan than in North America due to the differing impact of the last glaciation on these two regions. We tested the hypothesis that this longer coexistence in Japan would lead to extensive genetic admixture in nuclear and mitochondrial DNA whilst the distinct morphological traits and distributional patterns would be maintained.</p> <p>Results</p> <p>The high level of correspondence among morphological traits, distribution, and mitochondrial and nuclear DNA types for the specimens with <it>D. dentifera </it>mtDNA indicated that the species distinction has been maintained. However, a discordance between mtDNA and nuclear ITS-1 types was observed for most specimens that had <it>D. galeata </it>mtDNA, consistent with the pattern seen between the two species in North America. This observation suggests nuclear introgression from <it>D. dentifera </it>into <it>D. galeata </it>without mitochondrial introgression.</p> <p>Conclusions</p> <p>The separation of morphological traits and distribution ranges of the two hybridizing species in Japan, as well as in North America, has been maintained, despite large differences in climatic and geographical histories of these two regions. Variations in environmental factors, such as predation pressure, might affect maintenance of the distribution, although the further studies are needed to confirm this.</p

    A Molecular and Co-Evolutionary Context for Grazer Induced Toxin Production in Alexandrium tamarense

    Get PDF
    Marine dinoflagellates of the genus Alexandrium are the proximal source of neurotoxins associated with Paralytic Shellfish Poisoning. The production of these toxins, the toxin biosynthesis and, thus, the cellular toxicity can be influenced by abiotic and biotic factors. There is, however, a lack of substantial evidence concerning the toxins' ecological function such as grazing defense. Waterborne cues from copepods have been previously found to induce a species-specific increase in toxin content in Alexandrium minutum. However, it remains speculative in which context these species-specific responses evolved and if it occurs in other Alexandrium species as well. In this study we exposed Alexandrium tamarense to three copepod species (Calanus helgolandicus, Acartia clausii, and Oithona similis) and their corresponding cues. We show that the species-specific response towards copepod-cues is not restricted to one Alexandrium species and that co-evolutionary processes might be involved in these responses, thus giving additional evidence for the defensive role of phycotoxins. Through a functional genomic approach we gained insights into the underlying molecular processes which could trigger the different outcomes of these species-specific responses and consequently lead to increased toxin content in Alexandrium tamarense. We propose that the regulation of serine/threonine kinase signaling pathways has a major influence in directing the external stimuli i.e. copepod-cues, into different intracellular cascades and networks in A. tamarense. Our results show that A. tamarense can sense potential predating copepods and respond to the received information by increasing its toxin production. Furthermore, we demonstrate how a functional genomic approach can be used to investigate species interactions within the plankton community
    • …
    corecore