415 research outputs found

    Maritime Intercollegiate Debating League

    Get PDF

    Effect of nucleon exchange on projectile multifragmentation in the reactions of 28Si + 112Sn and 124Sn at 30 and 50 MeV/nucleon

    Full text link
    Multifragmentation of quasiprojectiles was studied in reactions of 28Si beam with 112Sn and 124Sn targets at projectile energies 30 and 50 MeV/nucleon. The quasiprojectile observables were reconstructed using isotopically identified charged particles with Z_f <= 5 detected at forward angles. The nucleon exchange between projectile and target was investigated using isospin and excitation energy of reconstructed quasiprojectile. For events with total reconstructed charge equal to the charge of the beam (Z_tot = 14) the influence of beam energy and target isospin on neutron transfer was studied in detail. Simulations employing subsequently model of deep inelastic transfer, statistical model of multifragmentation and software replica of FAUST detector array were carried out. A concept of deep inelastic transfer provides good description of production of highly excited quasiprojectiles. The isospin and excitation energy of quasiprojectile were described with good overall agreement. The fragment multiplicity, charge and isospin were reproduced satisfactorily. The range of contributing impact parameters was determined using backtracing procedure.Comment: 11 pages, 8 Postscript figures, LaTeX, to appear in Phys. Rev. C ( Dec 2000

    Energy and angular momentum sharing in dissipative collisions

    Full text link
    Primary and secondary masses of heavy reaction products have been deduced from kinematics and E-ToF measurements, respectively, for the direct and reverse collisions of 93Nb and 116Sn at 25 AMeV. Light charged particles have also been measured in coincidence with the heavy fragments. Direct experimental evidence of the correlation of energy-sharing with net mass transfer has been found using the information from both the heavy fragments and the light charged particles. The ratio of Hydrogen and Helium multiplicities points to a further correlation of angular momentum sharing with net mass transfer.Comment: 21 pages, 20 figures. Submitted to European Physics Journal

    Symmetrised Characterisation of Noisy Quantum Processes

    Full text link
    A major goal of developing high-precision control of many-body quantum systems is to realise their potential as quantum computers. Probably the most significant obstacle in this direction is the problem of "decoherence": the extreme fragility of quantum systems to environmental noise and other control limitations. The theory of fault-tolerant quantum error correction has shown that quantum computation is possible even in the presence of decoherence provided that the noise affecting the quantum system satisfies certain well-defined theoretical conditions. However, existing methods for noise characterisation have become intractable already for the systems that are controlled in today's labs. In this paper we introduce a technique based on symmetrisation that enables direct experimental characterisation of key properties of the decoherence affecting a multi-body quantum system. Our method reduces the number of experiments required by existing methods from exponential to polynomial in the number of subsystems. We demonstrate the application of this technique to the optimisation of control over nuclear spins in the solid state.Comment: About 12 pages, 5 figure

    Impact of a catch-up strategy of DT-IPV vaccination during hospitalization on vaccination coverage among people over 65 years of age in france: The HOSPIVAC study (Vaccination during hospitalization)

    Get PDF
    In France, diphtheria tetanus and inactivated polio vaccine (DT-IPV) coverage and immunization are insufficient in the elderly and decrease with age. The principal objective of this study was to assess the impact of a strategy of catch-up DT-IPV vaccination during hospitalization in people over the age of 65 years in central France (the Sarthe region). We performed a prospective, single-center, cluster-randomized study (four hospital wards). We included patients aged &ge;65 years, without mental impairment, contraindication and who accepted to participate, hospitalized in the internal medicine wards in Le Mans Hospital from 28 May 2018 to 27 May 2019. The DT-IPV vaccination status of the patients was determined at inclusion and the wards were randomized (intervention and control). In the intervention group, vaccination was up-dated during hospitalization. In case of temporary contraindication, vaccination was prescribed at hospital discharge. Patients hospitalized in the control wards received oral information only. Final immunization status was determined by calling the patient&rsquo;s general practitioner two months after hospital discharge. One hundred and fifty seven patients were included: 73 in the intervention and 84 in the control arm. Baseline immunization coverage was 46.5%. Vaccination coverage increased from 56.2% to 80.8% in the intervention group and from 38.1% to 40.5% in the control group (p &lt; 0.001). Having received sufficient information from the general practitioner was the only factor associated with vaccination being up-to-date in uni- and multivariate analysis: OR = 5.07 [2.45&ndash;10.51]. In a setting of low vaccination coverage DT-IPV vaccination during hospitalization is an effective catch-up strategy

    Randomized benchmarking of single and multi-qubit control in liquid-state NMR quantum information processing

    Full text link
    Being able to quantify the level of coherent control in a proposed device implementing a quantum information processor (QIP) is an important task for both comparing different devices and assessing a device's prospects with regards to achieving fault-tolerant quantum control. We implement in a liquid-state nuclear magnetic resonance QIP the randomized benchmarking protocol presented by Knill et al (PRA 77: 012307 (2008)). We report an error per randomized π2\frac{\pi}{2} pulse of 1.3±0.1×10−41.3 \pm 0.1 \times 10^{-4} with a single qubit QIP and show an experimentally relevant error model where the randomized benchmarking gives a signature fidelity decay which is not possible to interpret as a single error per gate. We explore and experimentally investigate multi-qubit extensions of this protocol and report an average error rate for one and two qubit gates of 4.7±0.3×10−34.7 \pm 0.3 \times 10^{-3} for a three qubit QIP. We estimate that these error rates are still not decoherence limited and thus can be improved with modifications to the control hardware and software.Comment: 10 pages, 6 figures, submitted versio

    Inhomogeneous isospin distribution in the reactions of 28Si + 112Sn and 124Sn at 30 and 50 MeV/nucleon

    Get PDF
    We have created quasiprojectiles of varying isospin via peripheral reactions of 28Si + 112Sn and 124Sn at 30 and 50 MeV/nucleon. The quasiprojectiles have been reconstructed from completely isotopically identified fragments. The difference in N/Z of the reconstructed quasiprojectiles allows the investigation of the disassembly as a function of the isospin of the fragmenting system. The isobaric yield ratio 3H/3He depends strongly on N/Z ratio of quasiprojectiles. The dependences of mean fragment multiplicity and mean N/Z ratio of the fragments on N/Z ratio of the quasiprojectile are different for light charged particles and intermediate mass fragments. Observation of a different N/Z ratio of light charged particles and intermediate mass fragments is consistent with an inhomogeneous distribution of isospin in the fragmenting system.Comment: 5 pages, 4 Postscript figures, RevTe
    • …
    corecore