298 research outputs found

    3D micro-computed tomography of trabecular and cortical bone architecture with application to a rat model of immobilisation osteoporosis

    Get PDF
    Bone mass and microarchitecture are the main determinants of bone strength. Three-dimensional micro-computed tomogrpahy has the potential to examine complete bones of small laboratory animals with very high resolution in a non-invasive way. In the presented work, the proximal part of the tibiae of hindlimb unloaded and control rats were measured with 3D MicroCT, and the secondary spongiosa of the scanned region was evaluated using direct evaluation techniques that do not require model assumptions. For determination of the complete bone status, the cortex of the tibiae was evaluated and characterised by its thickness. It is shown that with the proposed anatomically conforming volume of interest (VOI), up to an eight-fold volume increase can be evaluated compared to cubic or spherical VOIs. A pronounced trabecular bone loss of −50% is seen after 23 days of tail suspension. With the new evaluation techniques, it is shown that most of this bone loss is caused by the thinning of trabeculae, and to a lesser extent by a decrease in their number. What changes most radically is the structure type: the remaining bone is more rod-like than the control group's bone. Cortical bone decreases less than trabecular bone, with only −18% after 23 day

    Historia poblacional y análisis antropogenético de la ciudad de Salta

    Get PDF
    In the present study, the genetic composition of Salta capital city was estimated in a population sample. A total of 223 non-related​ blood-donors from the Centro Privado de Hemoterapia were included, who provided written informed consent and genealogical information. Twelve autosomal markers, GM allotypes, mtDNA and Y-chromosome continental origin were analysed; genetic admixture was estimated employing the ADMIX program. Autosomal markers show the presence of 50,02% for the Amerindian component, 46,29% for the European and 3,51% for the African component. Amerindians mitochondrial haplogroups represented a 93,75%, while the Europeans haplogroups represented a 3,85% and the Africans a 2,40%; 17,1% of males analysed exhibited the aboriginal variant Q*M3. The data were compared to those obtained previously in other cities, and the genetic admixture of Salta showed the highest values of Amerindian and African component. The intraregional immigration is much more remarkable than interregional or foreign immigration. These studies reinforce the idea that the Argentine population should not be considered as a homogeneus totality but variability must be taken into account

    Full-Body Radiographic Analysis of Postoperative Deviations From Age-Adjusted Alignment Goals in Adult Spinal Deformity Correction and Related Compensatory Recruitment.

    Get PDF
    Background: Full-body stereographs for adult spinal deformity (ASD) have enhanced global deformity and lower-limb compensation associations. The advent of age-adjusted goals for classic ASD parameters (sagittal vertical axis, pelvic tilt, spino-pelvic mismatch [PI-LL]) has enabled individualized evaluation of successful versus failed realignment, though these remain to be radiographically assessed postoperatively. This study analyzes pre- and postoperative sagittal alignment to quantify patient-specific correction against age-adjusted goals, and presents differences in compensation in patients whose postoperative profile deviates from targets. Methods: Single-center retrospective review of ASD patients ≥ 18 years with biplanar full-body stereographic x-rays. Inclusion: ≥ 4 levels fused, complete baseline and early (≤ 6-month) follow-up imaging. Correction groups generated at postoperative visit for actual alignment compared to age-adjusted ideal values for pelvic tilt, PI-LL, and sagittal vertical axis derived from clinically relevant formulas. Patients that matched exact ± 10-year threshold for age-adjusted targets were compared to unmatched cases (undercorrected or overcorrected). Comparison of spinal alignment and compensatory mechanisms (thoracic kyphosis, hip extension, knee flexion, ankle flexion, pelvic shift) across correction groups were performed with ANOVA and paired Results: The sagittal vertical axis, pelvic tilt, and PI-LL of 122 patients improved at early postoperative visits ( Conclusions: Global alignment cohort improvements were observed, and when comparing actual to age-adjusted alignment, undercorrections recruited pelvic and lower-limb flexion to compensate. Level of Evidence: 3

    The Staphylococcus aureus cell division protein, DivIC, interacts with the cell wall and controls its biosynthesis

    Get PDF
    Bacterial cell division is a complex, dynamic process that requires multiple protein components to orchestrate its progression. Many division proteins are highly conserved across bacterial species alluding to a common, basic mechanism. Central to division is a transmembrane trimeric complex involving DivIB, DivIC and FtsL in Gram-positives. Here, we show a distinct, essential role for DivIC in division and survival of Staphylococcus aureus. DivIC spatially regulates peptidoglycan synthesis, and consequently cell wall architecture, by influencing the recruitment to the division septum of the major peptidoglycan synthetases PBP2 and FtsW. Both the function of DivIC and its recruitment to the division site depend on its extracellular domain, which interacts with the cell wall via binding to wall teichoic acids. DivIC facilitates the spatial and temporal coordination of peptidoglycan synthesis with the developing architecture of the septum during cell division. A better understanding of the cell division mechanisms in S. aureus and other pathogenic microorganisms can provide possibilities for the development of new, more effective treatments for bacterial infections

    Correlative super-resolution optical and atomic force microscopy reveals relationships between bacterial cell wall architecture and synthesis in Bacillus subtilis

    Get PDF
    Understanding how bacteria grow and divide requires insight into both the molecular-level dynamics of ultrastructure and the chemistry of the constituent components. Atomic force microscopy (AFM) can provide near molecular resolution images of biological systems but typically provides limited chemical information. Conversely, while super-resolution optical microscopy allows localization of particular molecules and chemistries, information on the molecular context is difficult to obtain. Here, we combine these approaches into STORMForce (stochastic optical reconstruction with atomic force microscopy) and the complementary SIMForce (structured illumination with atomic force microscopy), to map the synthesis of the bacterial cell wall structural macromolecule, peptidoglycan, during growth and division in the rod-shaped bacterium Bacillus subtilis. Using “clickable” d-amino acid incorporation, we fluorescently label and spatially localize a short and controlled period of peptidoglycan synthesis and correlate this information with high-resolution AFM of the resulting architecture. During division, septal synthesis occurs across its developing surface, suggesting a two-stage process with incorporation at the leading edge and with considerable in-filling behind. During growth, the elongation of the rod occurs through bands of synthesis, spaced by ∼300 nm, and corresponds to denser regions of the internal cell wall as revealed by AFM. Combining super-resolution optics and AFM can provide insights into the synthesis processes that produce the complex architectures of bacterial structural biopolymers

    Penicillin-binding protein 1 (PBP1) of Staphylococcus aureus has multiple essential functions in cell division

    Get PDF
    Bacterial cell division is a complex process requiring the coordination of multiple components to allow the appropriate spatial and temporal control of septum formation and cell scission. Peptidoglycan (PG) is the major structural component of the septum, and our recent studies in the human pathogen Staphylococcus aureus have revealed a complex, multistage PG architecture that develops during septation. Penicillin-binding proteins (PBPs) are essential for the final steps of PG biosynthesis; their transpeptidase activity links the peptide side chains of nascent glycan strands. PBP1 is required for cell division in S. aureus, and here, we demonstrate that it has multiple essential functions associated with its enzymatic activity and as a regulator of division. Loss of PBP1, or just its C-terminal PASTA domains, results in cessation of division at the point of septal plate formation. The PASTA domains can bind PG and thereby potentially coordinate the cell division process. The transpeptidase activity of PBP1 is also essential, but its loss leads to a strikingly different phenotype of thickened and aberrant septa, which is phenocopied by the morphological effects of adding the PBP1-specific β-lactam, meropenem. Together, these results lead to a model for septal PG synthesis where PBP1 enzyme activity is required for the characteristic architecture of the septum and PBP1 protein molecules enable the formation of the septal plate. IMPORTANCE Bacterial cell wall peptidoglycan is essential, and its synthesis is the target of clinically important antibiotics such as β-lactams. β-lactams target penicillin-binding proteins (PBPs) that assemble new peptidoglycan from its building blocks. The human pathogen Staphylococcus aureus only has two essential PBPs that can carry out all the functions necessary for growth and division. In the absence of the confounding antibiotic resistance-associated PBP PBP2A, PBP1 is required for cell division, and here, we have found that it has several essential functions, both as an enzyme and as a coordinator by binding to cell division proteins and to its peptidoglycan product, via its PASTA domains. This has led to a new model for cell division with PBP1 responsible for the synthesis of the characteristic architectural features of the septum

    The three-dimensional easy morphological (3-DEMO) classification of scoliosis, part II: repeatability

    Get PDF
    BACKGROUND: In the first part of this study we proposed a new classification approach for spinal deformities (3-DEMO). To be valid, a classification needs to overcome the repeatability issue which is inherent both in the used classificatory system and in the measured object. AIM: The aim of this study is to present procedures and results obtained within the repeatability of 3-DEMO classification for scoliosis analysis. METHOD: We acquired the data of 100 pathological and 20 normal spines with an optoelectronic system (AUSCAN) and of two dummies with simulated spine deformity. On the obtained 3D reconstruction of the spine, we considered the coronal view with a spinal reference system (Top View) and its three related parameters, defined in part I, constituting the 3-DEMO classification. We calculated the repeatability coefficient for the subjects (two acquisitions for each subject with a time interval of 26 ± 12 sec), whereas we evaluated the system measurement error calculating the standard deviation of 50 consecutive acquisitions for each dummy. RESULTS: Comparing the results of the two types of acquisition, it emerged that the main part of parameters variability was due to postural adjustments The proportion of agreement for the 3-DEMO parameters gives a k value above 0.8; almost 10% of patients changed classification because of postural adjustments, but none had a "mirror-like" variation nor a change in more of one parameter at a time Repeatability coefficient is lower than the previously calculated normative limits. DISCUSSION: The 3-DEMO classification has a high repeatability when evaluated with an optoelectronic system such as the AUSCAN System, whose systematic error is very low. This means that the implied physiological phenomenon is consistent and overcomes the postural variability inherent in the measured object (normal or pathological subject)
    corecore