23 research outputs found

    Rescue of Advanced Pompe Disease in Mice with Hepatic Expression of Secretable Acid α-Glucosidase.

    Get PDF
    Pompe disease is a neuromuscular disorder caused by disease-associated variants in the gene encoding for the lysosomal enzyme acid α-glucosidase (GAA), which converts lysosomal glycogen to glucose. We previously reported full rescue of Pompe disease in symptomatic 4-month-old Gaa knockout (Gaa-/-) mice by adeno-associated virus (AAV) vector-mediated liver gene transfer of an engineered secretable form of GAA (secGAA). Here, we showed that hepatic expression of secGAA rescues the phenotype of 4-month-old Gaa-/- mice at vector doses at which the native form of GAA has little to no therapeutic effect. Based on these results, we then treated severely affected 9-month-old Gaa-/- mice with an AAV vector expressing secGAA and followed the animals for 9 months thereafter. AAV-treated Gaa-/- mice showed complete reversal of the Pompe phenotype, with rescue of glycogen accumulation in most tissues, including the central nervous system, and normalization of muscle strength. Transcriptomic profiling of skeletal muscle showed rescue of most altered pathways, including those involved in mitochondrial defects, a finding supported by structural and biochemical analyses, which also showed restoration of lysosomal function. Together, these results provide insight into the reversibility of advanced Pompe disease in the Gaa-/- mouse model via liver gene transfer of secGAA.This work was supported by Genethon, the French Muscular Dystro-phy Association (AFM), and Spark Therapeutics. It was also sup-ported by the European Union’s Research and Innovation Programunder grant agreement number 667751 (to F.M.), the EuropeanResearch Council Consolidator Grant under grant agreement number617432 (to F.M.), and Marie SkƂodowska-Curie Actions-IndividualFellowship (MSCA-IF) grant agreement number 797144 (to U.C.)S

    Identification of decorin derived peptides with a zinc dependent anti-myostatin activity

    No full text
    International audienceDecorin is a member of the small leucine-rich proteoglycan family and it is a component of the extracellular matrix. Decorin was previously shown to bind different molecules, including myostatin, in a zinc-dependent manner. Here, we investigated in detail the anti-myostatin activity of decorin and fragments thereof. We show that this protein displays in vitro anti-myostatin activities with an IC(50) of 2.3 × 10(-8)M. After intramuscular injection of decorin in dystrophic mdx and γ-sarcoglycan(-/-) mice, we observed a significant increase of the muscle mass and this effect was maximal 18 days after administration. Further, we show that the myostatin-binding site is located in the N-terminal domain of decorin. In fact, a peptide encompassing the 31-71 sequence retains full myostatin binding capacity and intramuscular injection of the peptide induces muscle hypertrophy. The evaluation of three additional peptides suggests a crucial role of the four cysteines within the conserved CX3CXCX6C motif of class I of the small leucine-rich proteoglycans. Altogether, our results show that the N-terminal domain of decorin is sufficient for the binding to myostatin and they underscore the crucial role for this interaction of zinc and the cysteine cluster

    Transposon-mediated Generation of Cellular and Mouse Models of Splicing Mutations to Assess the Efficacy of snRNA-based Therapeutics

    Get PDF
    Disease-causing splicing mutations can be rescued by variants of the U1 small nuclear RNA (U1snRNAs). However, the evaluation of the efficacy and safety of modified U1snRNAs as therapeutic tools is limited by the availability of cellular and animal models specific for a given mutation. Hence, we exploited the hyperactive Sleeping Beauty transposon system (SB100X) to integrate human factor IX (hFIX) minigenes into genomic DNA in vitro and in vivo. We generated stable HEK293 cell lines and C57BL/6 mice harboring splicing-competent hFIX minigenes either wild type (SChFIX-wt) or mutated (SChFIXex5-2C). In both models the SChFIXex5-2C variant, found in patients affected by Hemophilia B, displayed an aberrant splicing pattern characterized by exon 5 skipping. This allowed us to test, for the first time in a genomic DNA context, the efficacy of the snRNA U1-fix9, delivered with an adeno-associated virus (AAV) vector. With this approach, we showed rescue of the correct splicing pattern of hFIX mRNA, leading to hFIX protein expression. These data validate the SB100X as a versatile tool to quickly generate models of human genetic mutations, to study their effect in a stable DNA context and to assess mutation-targeted therapeutic strategies

    Efficacy and biodistribution analysis of intracerebroventricular administration of an optimized scAAV9-SMN1 vector in a mouse model of spinal muscular atrophy

    Get PDF
    Spinal muscular atrophy (SMA) is an autosomal recessive disease of variable severity caused by mutations in the SMN1 gene. Deficiency of the ubiquitous SMN function results in spinal cord α-motor neuron degeneration and proximal muscle weakness. Gene replacement therapy with recombinant adeno-associated viral (AAV) vectors showed therapeutic efficacy in several animal models of SMA. Here, we report a study aimed at analyzing the efficacy and biodistribution of a serotype-9, self-complementary AAV vector expressing a codon-optimized human SMN1 coding sequence (coSMN1) under the control of the constitutive phosphoglycerate kinase (PGK) promoter in neonatal SMNΔ7 mice, a severe animal model of the disease. We administered the scAAV9-coSMN1 vector in the intracerebroventricular (ICV) space in a dose-escalating mode, and analyzed survival, vector biodistribution and SMN protein expression in the spinal cord and peripheral tissues. All treated mice showed a significant, dose-dependent rescue of lifespan and growth with a median survival of 346 days. Additional administration of vector by an intravenous route (ICV+IV) did not improve survival, and vector biodistribution analysis 90 days postinjection indicated that diffusion from the cerebrospinal fluid to the periphery was sufficient to rescue the SMA phenotype. These results support the preclinical development of SMN1 gene therapy by CSF vector delivery

    Gene therapy with secreted acid alpha-glucosidase rescues Pompe disease in a novel mouse model with early-onset spinal cord and respiratory defects.

    Get PDF
    Pompe disease (PD) is a neuromuscular disorder caused by deficiency of acidalpha-glucosidase (GAA), leading to motor and respiratory dysfunctions. Available Gaa knock-out (KO) mouse models do not accurately mimic PD, particularly its highly impaired respiratory phenotype. Here we developed a new mouse model of PD crossing Gaa KOB6;129 with DBA2/J mice. We subsequently treated Gaa KODBA2/J mice with adeno-associated virus (AAV) vectors expressing a secretable form of GAA (secGAA). Male Gaa KODBA2/J mice present most of the key features of the human disease, including early lethality, severe respiratory impairment, cardiac hypertrophy and muscle weakness. Transcriptome analyses of Gaa KODBA2/J, compared to the parental Gaa KOB6;129 mice, revealed a profoundly impaired gene signature in the spinal cord and a similarly deregulated gene expression in skeletal muscle. Muscle and spinal cord transcriptome changes, biochemical defects, respiratory and muscle function in the Gaa KODBA2/J model were significantly improved upon gene therapy with AAV vectors expressing secGAA. These data show that the genetic background impacts on the severity of respiratory function and neuroglial spinal cord defects in the Gaa KO mouse model of PD. Our findings have implications for PD prognosis and treatment, show novel molecular pathophysiology mechanisms of the disease and provide a unique model to study PD respiratory defects, which majorly affect patients. This work was supported by Genethon, the French Muscular Dystrophy Association (AFM), the European Commission (grant nos. 667751, 617432, and 797144), and Spark Therapeutics.This work was supported by Genethon and the French Muscular Dystrophy Association (AFM, to F.M.). It was also supported by the European Union’s research and innovation program under grant agreement no. 667751 (to F.M.), the European Research Council Consolidator Grant under grant agreement no. 617432 (to F.M.), Marie Skodowska-Curie Actions Individual Fellowship (MSCA-IF) grant agreement no. 797144 (to U.C.), and by Spark Therapeutics under a sponsored research agreement.S

    Influence of Pre-existing Anti-capsid Neutralizing and Binding Antibodies on AAV Vector Transduction

    No full text
    International audiencePre-existing immunity to adeno-associated virus (AAV) is highly prevalent in humans and can profoundly impact transduction efficiency. Despite the relevance to AAV-mediated gene transfer, relatively little is known about the fate of AAV vectors in the presence of neutralizing antibodies (NAbs). Similarly, the effect of binding antibodies (BAbs), with no detectable neutralizing activity, on AAV transduction is ill defined. Here, we delivered AAV8 vectors to mice carrying NAbs and demonstrated that AAV particles are taken up by both liver parenchymal and non-parenchymal cells; viral particles are then rapidly cleared, without resulting in transgene expression. In vitro, imaging of hepatocytes exposed to AAV vectors pre-incubated with either NAbs or BAbs revealed that virus is taken up by cells in both cases. Whereas no successful transduction was observed when AAV was pre-incubated with NAbs, an increased capsid internalization and transgene expression was observed in the presence of BAbs. Accordingly, AAV8 vectors administered to mice passively immunized with anti-AAV8 BAbs showed a more efficient liver transduction and a unique vector biodistribution profile compared to mice immunized with NAbs. These results highlight a virtually opposite effect of neutralizing and binding antibodies on AAV vectors transduction

    AAV Gene Transfer with Tandem Promoter Design Prevents Anti-transgene Immunity and Provides Persistent Efficacy in Neonate Pompe Mice

    No full text
    International audienceHepatocyte-restricted, AAV-mediated gene transfer is being used to provide sustained, tolerogenic transgene expression in gene therapy. However, given the episomal status of the AAV genome, this approach cannot be applied to pediatric disorders when hepatocyte proliferation may result in significant loss of therapeutic efficacy over time. In addition, many multi-systemic diseases require widespread expression of the therapeutic transgene that, when provided with ubiquitous or tissue-specific non-hepatic promoters, often results in anti-transgene immunity. Here we have developed tandem promoter monocistronic expression cassettes that, packaged in a single AAV, provide combined hepatic and extra-hepatic tissue-specific transgene expression and prevent anti-transgene immunity. We validated our approach in infantile Pompe disease, a prototype disease caused by lack of the ubiquitous enzyme acid-alpha-glucosidase (GAA), presenting multi-systemic manifestations and detrimental anti-GAA immunity. We showed that the use of efficient tandem promoters prevents immune responses to GAA following systemic AAV gene transfer in immunocompetent Gaa-/- mice. Then we demonstrated that neonatal gene therapy with either AAV8 or AAV9 in Gaa-/- mice resulted in persistent therapeutic efficacy when using a tandem liver-muscle promoter (LiMP) that provided high and persistent transgene expression in non-dividing extra-hepatic tissues. In conclusion, the tandem promoter design overcomes important limitations of AAV-mediated gene transfer and can be beneficial when treating pediatric conditions requiring persistent multi-systemic transgene expression and prevention of anti-transgene immunity

    A translationally optimized AAV-UGT1A1 vector drives safe and long-lasting correction of Crigler-Najjar syndrome

    No full text
    Crigler-Najjar syndrome is a severe metabolic disease of the liver due to a reduced activity of the UDP Glucuronosyltransferase 1A1 (UGT1A1) enzyme. In an effort to translate to the clinic an adeno-associated virus vector mediated liver gene transfer approach to treat Crigler-Najjar syndrome, we developed and optimized a vector expressing the UGT1A1 transgene. For this purpose, we designed and tested in vitro and in vivo multiple codon-optimized UGT1A1 transgene cDNAs. We also optimized noncoding sequences in the transgene expression cassette. Our results indicate that transgene codon-optimization is a strategy that can improve efficacy of gene transfer but needs to be carefully tested in vitro and in vivo. Additionally, while inclusion of introns can enhance gene expression, optimization of these introns, and in particular removal of cryptic ATGs and splice sites, is an important maneuver to enhance safety and efficacy of gene transfer. Finally, using a translationally optimized adeno-associated virus vector expressing the UGT1A1 transgene, we demonstrated rescue of the phenotype of Crigler-Najjar syndrome in two animal models of the disease, Gunn rats and Ugt1a1-/- mice. We also showed long-term (>1 year) correction of the disease in Gunn rats. These results support further translation of the approach to humans
    corecore