438 research outputs found

    Improving the Weizs\"acker-Williams Approximation in Electron-Proton Collisions

    Full text link
    We critically examine the validity of the Weizs\"acker-Williams approximation in electron-hadron collisions. We show that in its commonly used form it can lead to large errors, and we show how to improve it in order to get accurate results. In particular, we present an improved form that is valid beyond the leading logarithmic approximation in the case when a small-angle cut is applied to the scattered electron. Furthermore we include comparisons of the approximate expressions with the exact electroproduction calculation in the case of heavy-quark production.Comment: 10 pages (LaTex, style file included) + 3 table

    Helicity Amplitudes for Single-Top Production

    Get PDF
    Single top quark production at hadron colliders allows a direct measurement of the top quark charged current coupling. We present the complete tree-level helicity amplitudes for four processes involving the production and semileptonic decay of a single top quark: W-gluon fusion, flavor excitation, s-channel production and W-associated production. For the first three processes we study the quality of the narrow top width approximation. We also examine momentum and angular distributions of some of the final state particles.Comment: 27 pages, 7 figures, final versio

    On next-to-eikonal exponentiation

    Full text link
    The eikonal approximation is at the heart of many theoretical and phenomenological studies involving multiple soft gauge boson emissions in high energy physics. We describe our efforts towards the extension of the eikonal approximation for scattering amplitudes to the first subleading power in the soft momentum.Comment: Proc. of "Loops and Legs in Quantum Field Theory", April, 2010, W\"orlitz, German

    Soft-gluon resummation for heavy quark production in hadronic collisions

    Get PDF
    We discuss the heavy quark production cross section near partonic threshold in hadronic collisions, including the resummation of leading and next-to-leading logarithms arising from soft gluon emission. We show how to handle the complications due to the non-universal non-leading logarithms. We give analytical results for the qqˉq {\bar q} partonic subprocess and numerical results in the DIS scheme for top quark production at the Fermilab Tevatron where the qqˉq {\bar q} channel dominates.Comment: 16 pages LaTeX including 4 eps figures, a few equations and some text added, figure 3 corrected, other small change

    Fully differential QCD corrections to single top quark final states

    Get PDF
    A new next-to-leading order Monte Carlo program for calculation of fully differential single top quark final states is described and first results presented. Both the s- and t-channel contributions are included.Comment: 3 pages, 3 figures, talk presented at DPF2000, August 9-12, 2000. To appear in International Journal of Modern Physics

    Towards all-order factorization of QED amplitudes at next-to-leading power

    Get PDF
    We generalise the factorization of abelian gauge theory amplitudes to next-to-leading power (NLP) in a soft scale expansion, following a recent generalisation for Yukawa theory. From an all-order power counting analysis of leading and next-to-leading regions, we infer the factorized structure for both a parametrically small and zero fermion mass. This requires the introduction of new universal jet functions, for non-radiative and single-radiative QED amplitudes, which we compute at one-loop order. We show that our factorization formula reproduces the relevant regions in one- and two-loop scattering amplitudes, appropriately addressing endpoint divergences. It provides a description of virtual collinear modes and accounts for non-trivial hard-collinear interplay present beyond the one-loop level, making this a first step towards a complete all-order factorization framework for gauge-theory amplitudes at NLP.Comment: 31 pages, 18 figures. v2: as in journal versio

    Deep-inelastic production of heavy quarks

    Get PDF
    Deep-inelastic production of heavy quarks at HERA, especially charm, is an excellent signal to measure the gluon distribution in the proton at small xx values. By measuring various differential distributions of the heavy quarks this reaction permits additional more incisive QCD analyses due to the many scales present. Furthermore, the relatively small mass of the charm quark, compared to the typical momentum transfer QQ, allows one to study whether and when to treat this quark as a parton. This reaction therefore sheds light on some of the most fundamental aspects of perturbative QCD. We discuss the above issues and review the feasibility of their experimental investigation in the light of a large integrated luminosity.Comment: 10 pages, uses epsfig.sty, five ps figures included. To appear in the proceedings of the workshop Future Physics at HERA, eds. G. Ingelman, A. De Roeck and R. Klanner, DESY, Hamburg, 199

    Soft gluon resummation for squark and gluino pair-production at hadron colliders

    Get PDF
    We report on the study of soft gluon effects in the production of squarks and gluinos at hadron colliders. Close to production threshold, the emission of soft gluon results in the appearence of large logarithmic corrections in the theoretical expressions. In order to resum these corrections at next-to-leading-logarithmic accuracy appropriate one-loop anomalous dimensions have to be calculated. We present the calculation of the anomalous dimensions for all production channels of squarks and gluinos and provide numerical predictions for the Tevatron and the LHC.Comment: 6 pages, talk given at RADCOR 2009 - 9th International Symposium on Radiative Corrections (Applications of Quantum Field Theory to Phenomenology) October 25-30 2009, Ascona, Switzerlan
    • …
    corecore