29 research outputs found
Next-to-eikonal corrections to soft gluon radiation: a diagrammatic approach
We consider the problem of soft gluon resummation for gauge theory amplitudes
and cross sections, at next-to-eikonal order, using a Feynman diagram approach.
At the amplitude level, we prove exponentiation for the set of factorizable
contributions, and construct effective Feynman rules which can be used to
compute next-to-eikonal emissions directly in the logarithm of the amplitude,
finding agreement with earlier results obtained using path-integral methods.
For cross sections, we also consider sub-eikonal corrections to the phase space
for multiple soft-gluon emissions, which contribute to next-to-eikonal
logarithms. To clarify the discussion, we examine a class of log(1 - x) terms
in the Drell-Yan cross-section up to two loops. Our results are the first steps
towards a systematic generalization of threshold resummations to
next-to-leading power in the threshold expansion.Comment: 66 pages, 19 figure
Soft-gluon resummation for squark and gluino hadroproduction
We consider the resummation of soft gluon emission for squark and gluino
hadroproduction at next-to-leading-logarithmic (NLL) accuracy in the framework
of the minimal supersymmetric standard model. We present analytical results for
squark-squark and squark-gluino production and provide numerical predictions
for all squark and gluino pair-production processes at the Tevatron and at the
LHC. The size of the soft-gluon corrections and the reduction in the scale
uncertainty are most significant for processes involving gluino production. At
the LHC, where the sensitivity to squark and gluino masses ranges up to 3 TeV,
the corrections due to NLL resummation over and above the NLO predictions can
be as high as 35% in the case of gluino-pair production, whereas at the
Tevatron, the NLL corrections are close to 40% for squark-gluino final states
with sparticle masses around 500 GeV.Comment: 31 pages, 7 figure
Heavy Flavours at Colliders
I review some topics in the production and decays of heavy flavours that are
relevant for collider physics. In particular, I discuss the present status and
some recent progress related to masses, parton densities and fragmentation
functions of heavy quarks, as well as threshold resummation, polarized onium
production at high transverse momentum, and a factorization theorem for decays.Comment: 12 pages. Plenary talk given at UK Phenomenology Workshop on Collider
Physics, Durham, England, 19-24 Sep 1999 Comments and references adde
Soft Gluon Resummation for Heavy Quark Electroproduction
We present the threshold resummation for the cross section for
electroproduction of heavy quarks. We work to next-to-leading logarithmic
accuracy, and in single-particle inclusive kinematics. We provide
next-to-leading and next-to-next-to-leading order expansions of our resummed
formula, and examine numerically the quality of these finite order
approximations. For the case of charm we study their impact on the structure
function and its differential distribution with respect to the charm
transverse momentum.Comment: 27 pages, 17 figure
Supersymmetric top and bottom squark production at hadron colliders
The scalar partners of top and bottom quarks are expected to be the lightest
squarks in supersymmetric theories, with potentially large cross sections at
hadron colliders. We present predictions for the production of top and bottom
squarks at the Tevatron and the LHC, including next-to-leading order
corrections in supersymmetric QCD and the resummation of soft gluon emission at
next-to-leading-logarithmic accuracy. We discuss the impact of the higher-order
corrections on total cross sections and transverse-momentum distributions, and
provide an estimate of the theoretical uncertainty due to scale variation and
the parton distribution functions.Comment: 29 pages, 6 figure
Recoil and Threshold Corrections in Short-distance Cross Sections
We identify and resum corrections associated with the kinematic recoil of the
hard scattering against soft-gluon emission in single-particle inclusive cross
sections. The method avoids double counting and conserves the flow of partonic
energy. It reproduces threshold resummation for high-p_T single-particle cross
sections, when recoil is neglected, and Q_T-resummation at low Q_T, when
higher-order threshold logarithms are suppressed. We exhibit explicit resummed
cross sections, accurate to next-to-leading logarithm, for electroweak
annihilation and prompt photon inclusive cross sections.Comment: minor modifications of the text, some references added. 51 pages,
LaTeX, 6 figures as eps file
Multicenter benchmarking of short and long read wet lab protocols for clinical viral metagenomics
Metagenomics is gradually being implemented for diagnosing infectious diseases. However, in-depth protocol comparisons for viral detection have been limited to individual sets of experimental workflows and laboratories. In this study, we present a benchmark of metagenomics protocols used in clinical diagnostic laboratories initiated by the European Society for Clinical Virology (ESCV) Network on NGS (ENNGS). A mock viral reference panel was designed to mimic low biomass clinical specimens. The panel was used to assess the performance of twelve metagenomic wet lab protocols currently in use in the diagnostic laboratories of participating ENNGS member institutions. Both Illumina and Nanopore, shotgun and targeted capture probe protocols were included. Performance metrics sensitivity, specificity, and quantitative potential were assessed using a central bioinformatics pipeline. Overall, viral pathogens with loads down to 104 copies/ml (corresponding to CT values of 31 in our PCR assays) were detected by all the evaluated metagenomic wet lab protocols. In contrast, lower abundant mixed viruses of CT values of 35 and higher were detected only by a minority of the protocols. Considering the reference panel as the gold standard, optimal thresholds to define a positive result were determined per protocol, based on the horizontal genome coverage. Implementing these thresholds, sensitivity and specificity of the protocols ranged from 67 to 100 % and 87 to 100 %, respectively. A variety of metagenomic protocols are currently in use in clinical diagnostic laboratories. Detection of low abundant viral pathogens and mixed infections remains a challenge, implying the need for standardization of metagenomic analysis for use in clinical settings.</p
Multicenter benchmarking of short and long read wet lab protocols for clinical viral metagenomics
Metagenomics is gradually being implemented for diagnosing infectious diseases. However, in-depth protocol comparisons for viral detection have been limited to individual sets of experimental workflows and laboratories. In this study, we present a benchmark of metagenomics protocols used in clinical diagnostic laboratories initiated by the European Society for Clinical Virology (ESCV) Network on NGS (ENNGS). A mock viral reference panel was designed to mimic low biomass clinical specimens. The panel was used to assess the performance of twelve metagenomic wet lab protocols currently in use in the diagnostic laboratories of participating ENNGS member institutions. Both Illumina and Nanopore, shotgun and targeted capture probe protocols were included. Performance metrics sensitivity, specificity, and quantitative potential were assessed using a central bioinformatics pipeline. Overall, viral pathogens with loads down to 104 copies/ml (corresponding to CT values of 31 in our PCR assays) were detected by all the evaluated metagenomic wet lab protocols. In contrast, lower abundant mixed viruses of CT values of 35 and higher were detected only by a minority of the protocols. Considering the reference panel as the gold standard, optimal thresholds to define a positive result were determined per protocol, based on the horizontal genome coverage. Implementing these thresholds, sensitivity and specificity of the protocols ranged from 67 to 100 % and 87 to 100 %, respectively. A variety of metagenomic protocols are currently in use in clinical diagnostic laboratories. Detection of low abundant viral pathogens and mixed infections remains a challenge, implying the need for standardization of metagenomic analysis for use in clinical settings.</p
Webs in multiparton scattering using the replica trick
Soft gluon exponentiation in non-abelian gauge theories can be described in terms of webs. So far this description has been restricted to amplitudes with two hard partons, where webs were defined as the colour-connected subset of diagrams. Here we generalise the concept of webs to the multi-leg case, where the hard interaction involves non-trivial colour flow. Using the replica trick from statistical physics we solve the combinatorial problem of non-abelian exponentiation to all orders. In particular, we derive an algorithm for computing the colour factor associated with any given diagram in the exponent. The emerging result is exponentiation of a sum of webs, where each web is a linear combination of a subset of diagrams that are mutually related by permuting the eikonal gluon attachments to each hard parton. These linear combinations are responsible for partial cancellation of subdivergences, conforming with the renormalization of a multi-leg eikonal vertex. We also discuss the generalisation of exponentiation properties to beyond the eikonal approximatio
2021 Taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales.
Correction to: 2021 Taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Archives of Virology (2021) 166:3567â3579. https://doi.org/10.1007/s00705-021-05266-wIn March 2021, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. The phylum was expanded by four families (Aliusviridae, Crepuscuviridae, Myriaviridae, and Natareviridae), three subfamilies (Alpharhabdovirinae, Betarhabdovirinae, and Gammarhabdovirinae), 42 genera, and 200 species. Thirty-nine species were renamed and/or moved and seven species were abolished. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV.This work was supported in part through Laulima Government Solutions, LLC prime contract with the US National Institute of Allergy and Infectious Diseases (NIAID) under Contract No. HHSN272201800013C. J.H.K. performed this work as an employee of Tunnell Government Services (TGS), a subcontractor of Laulima Government Solutions, LLC under Contract No. HHSN272201800013C. This work was also supported in part with federal funds from the National Cancer Institute (NCI), National Institutes of Health (NIH), under Contract No. 75N91019D00024, Task Order No. 75N91019F00130 to I.C., who was supported by the Clinical Monitoring Research Program Directorate, Frederick National Lab for Cancer Research. This work was also funded in part by Contract No. HSHQDC-15-C-00064 awarded by DHS S&T for the management and operation of The National Biodefense Analysis and Countermeasures Center, a federally funded research and development center operated by the Battelle National Biodefense Institute (V.W.); and NIH contract HHSN272201000040I/HHSN27200004/D04 and grant R24AI120942 (N.V., R.B.T.). S.S. acknowledges partial support from the Special Research Initiative of Mississippi Agricultural and Forestry Experiment Station (MAFES), Mississippi State University, and the National Institute of Food and Agriculture, US Department of Agriculture, Hatch Project 1021494. Part of this work was supported by the Francis Crick Institute which receives its core funding from Cancer Research UK (FC001030), the UK Medical Research Council (FC001030), and the Wellcome Trust (FC001030).S